ترغب بنشر مسار تعليمي؟ اضغط هنا

50 - M. Babutzka , M. Bahr , J. Bonn 2012
The Karlsruhe Tritium Neutrino (KATRIN) experiment will measure the absolute mass scale of neutrinos with a sensitivity of $m_{ u}$ = 200 meV/c$^2$ by high-precision spectroscopy close to the tritium beta-decay endpoint at 18.6 keV. Its Windowless Ga seous Tritium Source (WGTS) is a beta-decay source of high intensity ($10^{11}$/s) and stability, where high-purity molecular tritium at 30 K is circulated in a closed loop with a yearly throughput of 10 kg. To limit systematic effects the column density of the source has to be stabilised at the 0.1% level. This requires extensive sensor instrumentation and dedicated control and monitoring systems for parameters such as the beam tube temperature, injection pressure, gas composition and others. Here we give an overview of these systems including a dedicated Laser-Raman system as well as several beta-decay activity monitors. We also report on results of the WGTS demonstrator and other large-scale test experiments giving proof-of-principle that all parameters relevant to the systematics can be controlled and monitored on the 0.1% level or better. As a result of these works, the WGTS systematics can be controlled within stringent margins, enabling the KATRIN experiment to explore the neutrino mass scale with the design sensitivity.
92 - K. Arnold , M. Bahr , G. Bozzi 2009
VBFNLO is a fully flexible parton level Monte Carlo program for the simulation of vector boson fusion, double and triple vector boson production in hadronic collisions at next-to-leading order in the strong coupling constant. VBFNLO includes Higgs an d vector boson decays with full spin correlations and all off-shell effects. In addition, VBFNLO implements CP-even and CP-odd Higgs boson via gluon fusion, associated with two jets, at the leading-order one-loop level with the full top- and bottom-quark mass dependence in a generic two-Higgs-doublet model. A variety of effects arising from beyond the Standard Model physics are implemented for selected processes. This includes anomalous couplings of Higgs and vector bosons and a Warped Higgsless extra dimension model. The program offers the possibility to generate Les Houches Accord event files for all processes available at leading order.
80 - M. Bahr , S. Gieseke , M. A. Gigg 2008
In this paper we describe Herwig++ version 2.3, a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton, lepton-hadron and hadron-hadron collisions. A number of important hard scattering processes are available, togethe r with an interface via the Les Houches Accord to specialized matrix element generators for additional processes. The simulation of Beyond the Standard Model (BSM) physics includes a range of models and allows new models to be added by encoding the Feynman rules of the model. The parton-shower approach is used to simulate initial- and final-state QCD radiation, including colour coherence effects, with special emphasis on the correct description of radiation from heavy particles. The underlying event is simulated using an eikonal multiple parton-parton scattering model. The formation of hadrons from the quarks and gluons produced in the parton shower is described using the cluster hadronization model. Hadron decays are simulated using matrix elements, where possible including spin correlations and off-shell effects.
64 - M. Bahr , S. Gieseke , M. Gigg 2008
A new release of the Monte Carlo program Herwig++ (version 2.3) is now available. This version includes a number of improvements including: the extension of the program to lepton-hadron collisions; the inclusion of several processes accurate at next- to-leading order in the POsitive Weight Hardest Emission Generator (POWHEG) scheme; the inclusion of three-body decays and finite-width effects in Beyond the Standard Model (BSM) physics processes; a new procedure for reconstructing the kinematics of the parton shower based on the colour structure of the hard scattering process; a new model for baryon decays including excited baryon multiplets; the addition of a soft component to the multiple scattering model of the underlying event; new matrix elements for Deep Inelastic Scattering (DIS) and e+e- processes.
65 - M. Bahr , S. Gieseke , M. Gigg 2008
A new release of the Monte Carlo program Herwig++ (version 2.2) is now available. This version includes a number of improvements including: matrix elements for the production of an electroweak gauge boson, W and Z, in association with a jet; several new processes for Higgs production in association with an electroweak gauge boson; and the matrix element correction for QCD radiation in Higgs production via gluon fusion.
83 - M. Bahr , S. Gieseke , M. Gigg 2007
A new release of the Monte Carlo program Herwig++ (version 2.1) is now available. This version includes a number of significant improvements including: an eikonal multiple parton-parton scattering model of the underlying event; the inclusion of Beyon d the Standard Model physics; and a new hadronic decay model tuned to LEP data. This version of the program is now fully ready for the simulation of events in hadron-hadron collisions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا