ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions driving novel emergent behavior. This is exemplified in 5d osm ates that host a metal-insulator transition (MIT) driven by magnetic order. Here we consider the most robust case, the 5d perovskite NaOsO3, and reveal a giant coupling between spin and phonon through a frequency shift of {Delta}{omega}=40 cm-1, the largest measured in any material. We identify the dominant octahedral breathing mode and show isosymmetry with spin ordering which induces dynamic charge disproportionation that sheds new light on the MIT. The occurrence of the dramatic spin-phonon-electronic coupling in NaOsO3 is due to a property common to all 5d materials: the large spatial extent of the 5d ion. This allows magnetism to couple to phonons on an unprecedented scale and consequently offers multiple new routes to enhanced coupled phenomena.
85 - J. Lee , S. Demura , M. B. Stone 2014
Bulk magnetization, transport and neutron scattering measurements were performed to investigate the electronic and magnetic properties of a polycrystalline sample of the newly discovered ferromagnetic superconductor, CeO$_{0.3}$F$_{0.7}$BiS$_{2}$. Fe rromagnetism develops below T$_{FM}$ = 6.54(8) K and superconductivity is found to coexist with the ferromagnetic state below T$_{SC}$ ~ 4.5 K. Inelastic neutron scattering measurements reveal a very weakly dispersive magnetic excitation at 1.8 meV that can be explained by an Ising-like spin Hamiltonian. Under application of an external magnetic field, the direction of the magnetic moment changes from the c-axis to the ab-plane and the 1.8 meV excitation splits into two modes. A possible mechanism for the unusual magnetism and its relation to superconductivity is discussed.
Iron pnictides and selenides display a variety of unusual magnetic phases originating from the interplay between electronic, orbital, and lattice degrees of freedom. Using powder inelastic neutron scattering on the two-leg ladder BaFe2Se3, we fully c haracterize the static and dynamic spin correlations associated with the Fe4 block state, an exotic magnetic ground state observed in this low-dimensional magnet and in Rb0.89Fe1.58Se2. All the magnetic excitations of the Fe4 block state predicted by an effective Heisenberg model with localized spins are observed below 300 meV and quantitatively reproduced. However, the data only account for 16 mub^2 per Fe2+, approximatively 2/3 of the total spectral weight expected for localized S=2 moments. Our results highlight how orbital degrees of freedom in iron-based magnets can conspire to stabilize an exotic magnetic state.
365 - K. Iida , J. Lee , M. B. Stone 2012
We investigate the imaginary part of the wave vector dependent dynamic spin susceptibility in Sr$_2$(Ru$_{0.99}$Ti$_{0.01}$)O$_4$ as a function of temperature using neutron scattering. At T=5 K, two-dimensional incommensurate (IC) magnetic fluctuatio ns are clearly observed around $mathbf{Q}_text{c}=(0.3,0.3,L)$ up to approximately 60 meV energy transfer. We find that the IC excitations disperse to ridges around the $(pi,pi)$ point. Below 50 K, the energy and temperature dependent excitations are well described by the phenomenological response function for a Fermi liquid system with a characteristic energy of 4.0(1) meV. Although the wave vector dependence of the IC magnetic fluctuations in Sr$_2$(Ru$_{0.99}$Ti$_{0.01}$)O$_4$ is similar to that in the Fermi liquid state of the parent compound, Sr$_2$RuO$_4$, the magnetic fluctuations are clearly suppressed by the Ti-doping.
We report inelastic and elastic neutron scattering, magnetic susceptibility, and heat capacity measurements of polycrystalline sodium ruthenate (Na$_3$RuO$_4$). Previous work suggests this material consists of isolated tetramers of $S=3/2$ Ru$^{5+}$ ions in a so-called lozenge configuration. Using a Heisenberg antiferromagnet Hamiltonian, we analytically determine the energy eigenstates for general spin $S$. From this model, the neutron scattering cross-sections for excitations associated with spin-3/2 spin-tetramer configurations is determined. Comparison of magnetic susceptibility and inelastic neutron scattering results shows that the proposed lozenge model is not distinctly supported, but provides evidence that the system may be better described as a pair of non-interacting inequivalent dimers, textit{i.e} double dimers. However, the existence of long-range magnetic order below $T_c approx 28$ K immediately questions such a description. Although no evidence of the lozenge model is observed, future studies on single crystals may further clarify the appropriate magnetic Hamiltonian.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا