ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.
SPT-CLJ2040-4451 -- spectroscopically confirmed at z = 1.478 -- is the highest redshift galaxy cluster yet discovered via the Sunyaev-Zeldovich effect. SPT-CLJ2040-4451 was a candidate galaxy cluster identified in the first 720 deg^2 of the South Pol e Telescope Sunyaev-Zeldovich (SPT-SZ) survey, and confirmed in follow-up imaging and spectroscopy. From multi-object spectroscopy with Magellan-I/Baade+IMACS we measure spectroscopic redshifts for 15 cluster member galaxies, all of which have strong [O II] 3727 emission. SPT-CLJ2040-4451 has an SZ-measured mass of M_500,SZ = 3.2 +/- 0.8 X 10^14 M_Sun/h_70, corresponding to M_200,SZ = 5.8 +/- 1.4 X 10^14 M_Sun/h_70. The velocity dispersion measured entirely from blue star forming members is sigma_v = 1500 +/- 520 km/s. The prevalence of star forming cluster members (galaxies with > 1.5 M_Sun/yr) implies that this massive, high-redshift cluster is experiencing a phase of active star formation, and supports recent results showing a marked increase in star formation occurring in galaxy clusters at z >1.4. We also compute the probability of finding a cluster as rare as this in the SPT-SZ survey to be >99%, indicating that its discovery is not in tension with the concordance Lambda-CDM cosmological model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا