ترغب بنشر مسار تعليمي؟ اضغط هنا

A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were emp loyed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be $Y_{337} = 5.61pm 0.06_{stat} pm 0.21_{syst}$ photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum.
280 - M. Ave , P.J. Boyle , F. Gahbauer 2008
The TRACER instrument (``Transition Radiation Array for Cosmic Energetic Radiation) has been developed for direct measurements of the heavier primary cosmic-ray nuclei at high energies. The instrument had a successful long-duration balloon flight in Antarctica in 2003. The detector system and measurement process are described, details of the data analysis are discussed, and the individual energy spectra of the elements O, Ne, Mg, Si, S, Ar, Ca, and Fe (nuclear charge Z=8 to 26) are presented. The large geometric factor of TRACER and the use of a transition radiation detector make it possible to determine the spectra up to energies in excess of 10$^{14}$ eV per particle. A power-law fit to the individual energy spectra above 20 GeV per amu exhibits nearly the same spectral index ($sim$ 2.65 $pm$ 0.05) for all elements, without noticeable dependence on the elemental charge Z.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا