ترغب بنشر مسار تعليمي؟ اضغط هنا

The unbound nucleus $^{18}$Na, the intermediate nucleus in the two-proton radioactivity of $^{19}$Mg, was studied by the measurement of the resonant elastic scattering reaction $^{17}$Ne(p,$^{17}$Ne)p performed at 4 A.MeV. Spectroscopic properties of the low-lying states were obtained in a R-matrix analysis of the excitation function. Using these new results, we show that the lifetime of the $^{19}$Mg radioactivity can be understood assuming a sequential emission of two protons via low energy tails of $^{18}$Na resonances.
404 - D. Lacroix , M. Assie , S. Ayik 2009
Microscopic theories beyond mean-field are developed to include pairing, in-medium nucleon-nucleon collisions as well as effects of initial fluctuations of one-body observables on nuclear dynamics. These theories are applied to nuclear reactions. The role of pairing on nuclear break-up is discussed. By including the effect of zero point motion of collective variables through a stochastic mean-field theory, not only average evolution of one-body observables are properly described but also fluctuations. Diffusion coefficients in fusion as well as mass distributions in transfer reactions are estimated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا