ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilises SkyMapper photometry t o pre-select metal-poor candidates, which are subsequently confirmed using AAOmega spectroscopy. We describe the discovery and analysis of four bulge giants with -2.72<=[Fe/H]<=-2.48, the lowest metallicity bulge stars studied with high-resolution spectroscopy to date. Using FLAMES/UVES spectra through the Gaia-ESO Survey we have derived abundances of twelve elements. Given the uncertainties, we find a chemical similarity between these bulge stars and halo stars of the same metallicity, although the abundance scatter may be larger, with some of the stars showing unusual [{alpha}/Fe] ratios.
116 - Z. Magic , R. Collet , M. Asplund 2013
We present the Stagger-grid, a comprehensive grid of time-dependent, 3D hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications like stellar spectroscopy, asteroseismology and the study of stellar convection. In this introductory paper, we describe the methods used for the computation of the grid and discuss the general properties of the 3D models as well as their temporal and spatial averages (<3D>). All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~220 grid models range in Teff from 4000 to 7000K in steps of 500K, in log g from 1.5 to 5.0 in steps of 0.5 dex, and [Fe/H] from -4.0 to +0.5 in steps of 0.5 and 1.0 dex. We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the <3D> models with widely applied 1D models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad range of stellar parameters the uncertainties of 1D models arising from the simplified treatment of physics, in particular convective energy transport. In agreement with previous findings, we find that the differences can be significant, especially for metal-poor stars.
34 - R. Collet , W. Hayek , M. Asplund 2011
Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars are characterized by cooler upper photospheric layers than their 1D counterparts. This property of 3D models can dramatically affect elemental abundances de rived from temperature-sensitive spectral lines. We investigate whether the cool surface temperatures predicted by metal-poor 3D models can be ascribed to the approximated treatment of scattering in the radiative transfer. We use the Bifrost code to test three different ways to handle scattering in 3D model atmospheres of metal-poor stars. First, we solve self-consistently the radiative transfer equation for a source function with a coherent scattering term. Second, we solve the radiative transfer equation for a Planckian source function, neglecting the contribution of continuum scattering to extinction in the optically thin layers; this has been the default mode in previous models of ours. Third, we treat scattering as pure absorption everywhere, which is the standard case in CO5BOLD models. We find that the second approach produces temperature structures with cool upper photospheric layers very similar to the correct coherent scattering solution. In contrast, treating scattering as pure absorption leads to significantly hotter and shallower temperature stratifications. The main differences in temperature structure between our published models and those generated with the CO5BOLD code can be traced to the different treatments of scattering. Neglecting the contribution of continuum scattering to extinction in optically thin layers provides a good approximation to the full radiative transfer solution for metal-poor stars. Our results demonstrate that the cool temperature stratifications predicted for metal-poor late-type stellar atmospheres by previous models of ours are not an artifact of the approximated treatment of scattering.
We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomp osition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350,K below log tau < -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.
We present new measurements of the abundances of carbon and oxygen derived from high-excitation C I and O I absorption lines in metal-poor halo stars, with the aim of clarifying the main sources of these two elements in the early stages of the chemic al enrichment of the Galaxy. We target 15 new stars compared to our previous study, with an emphasis on additional C/O determinations in the crucial metallicity range -3<[Fe/H]<-2. Departures from local thermodynamic equilibrium were accounted for in the line formation for both carbon and oxygen. The non-LTE effects are very strong at the lowest metallicities but, contrary to what has sometimes been assumed in the past due to a simplified assessment, of different degrees for the two elements. In addition, for the 28 stars with [Fe/H]<-1 previously analysed, stellar parameters were re-derived and non-LTE corrections applied in the same fashion as for the rest of our sample, giving consistent abundances for 43 halo stars in total. The new observations and non-LTE calculations strengthen previous suggestions of an upturn in C/O towards lower metallicity (particularly for [O/H]<-2). Adopting the H collisional cross-sections estimated from the classical Drawin formula leads to [C/O]~0 at [O/H]~-3. To remove the upturn in C/O, near-LTE formation for O I lines would be required, which could only happen if the H collisional efficiency with the Drawin recipe is underestimated by factors of up to several tens of times, which we consider unlikely. The high C/O values derived at the lowest metallicities may be revealing the fingerprints of Population III stars or may signal rotationally-aided nucleosynthesis in more normal Population II stars.
The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا