ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a method that can orthogonalize any pure continuous variable quantum state, i.e. generate a state $|psi_perp>$ from $|psi>$ where $<psi|psi_perp> = 0$, which does not require significant a priori knowledge of the input state. We illustra te how to achieve orthogonalization using the Jaynes-Cummings or beam-splitter interaction, which permits realization in a number of systems. Furthermore, we demonstrate how to orthogonalize the motional state of a mechanical oscillator in a cavity optomechanics context by developing a set of coherent phonon level operations. As the mechanical oscillator is a stationary system such operations can be performed at multiple times, providing considerable versatility for quantum state engineering applications. Utilizing this, we additionally introduce a method how to transform any known pure state into any desired target state.
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.
We suggest to interface nanomechanical systems via an optical quantum bus to atomic ensembles, for which means of high precision state preparation, manipulation and measurement are available. This allows in particular for a Quantum Non-Demolition Bel l measurement, projecting the coupled system, atomic ensemble - nanomechanical resonator, into an entangled EPR-state. The entanglement is observable even for nanoresonators initially well above their ground states and can be utilized for teleportation of states from an atomic ensemble to the mechanical system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا