ترغب بنشر مسار تعليمي؟ اضغط هنا

We know that $mathbb{Z}_n$ is a finite field for a prime number $n$. Let $m,n$ be arbitrary natural numbers and let $mathbb{Z}^m_n= mathbb{Z}_n timesmathbb{Z}_ntimes...timesmathbb{Z}_n$ be the Cartesian product of $m$ rings $mathbb{Z}_n$. In this not e, we present the action of $SL(m, mathbb{Z}_n)={A in mathbb{Z}^{m,m}_{n} : det A equiv 1 (modsimn)}$, where $SL(m, mathbb{Z}_n)$ for $ngeq 2$ is a group under matrix multiplication modulo $n$, on the ring $mathbb{Z}^m_n$ as a right multiplication of a row vector of $mathbb{Z}^m_n$ by a matrix of $SL(m, mathbb{Z}_n)$ to determine the orbits of the ring $mathbb{Z}^m_n$. This work is an extension of [1]
Extended modular group $bar{Pi}=<R,T,U:R^2=T^2=U^3=(RT)^2=(RU)^2=1>$, where $ R:zrightarrow -bar{z}, sim T:zrightarrowfrac{-1}{z},simU:zrightarrowfrac{-1}{z +1} $, has been used to study some properties of the binary quadratic forms whose base points lie in the point set fundamental region $F_{bar{Pi}}$ (See cite{Tekcan1, Flath}). In this paper we look at how base points have been used in the study of equivalent binary quadratic forms, and we prove that two positive definite forms are equivalent if and only if the base point of one form is mapped onto the base point of the other form under the action of the extended modular group and any positive definite integral form can be transformed into the reduced form of the same discriminant under the action of the extended modular group and extend these results for the subset $QQ^*(sqrt{-n})$ of the imaginary quadratic field $QQ(sqrt{-m})$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا