ترغب بنشر مسار تعليمي؟ اضغط هنا

New models of rotating and non-rotating stars are computed for initial masses between 25 and 120 Msun and for metallicities Z = 0.004, 0.008, 0.020 and 0.040 with the aim of reexamining the wind contribution of Wolf-Rayet (WR) stars to the F19 enrich ment of the interstellar medium. Models with an initial rotation velocity vini = 300 km/s are found to globally eject less F19 than the non-rotating models. We compare our new predictions with those of Meynet & Arnould (2000), and demonstrate that the F19 yields are very sensitive to the still uncertain F19(alpha,p)Ne22 rate and to the adopted mass loss rates. Using the recommended mass loss rate values that take into account the clumping of the WR wind and the NACRE reaction rates when available, we obtain WR F19 yields that are significantly lower than predicted by Meynet & Arnould (2000), and that would make WR stars non-important contributors to the galactic F19 budget. In view, however, of the large nuclear and mass loss rate uncertainties, we consider that the question of the WR contribution to the galactic F19 remains quite largely open.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا