ترغب بنشر مسار تعليمي؟ اضغط هنا

The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 microA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Moller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8 degrees and 11.6 degrees were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cerenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q^2 = 0.025 GeV^2 was determined using dedicated low-current (~100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet.
In this chapter we describe the remote sensing measurement of nitrogen-bearing species in Titans atmosphere by the Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft. This instrument, which detects the thermal infrared spectrum from 10- 1500 cm-1 (1000-7 microns) is sensitive to vibrational emissions of gases and condensates in Titans stratosphere and lower mesosphere, permitting the measurement of ambient temperature and the abundances of gases and particulates. Three N-bearing species are firmly detected: HCN, HC3N and C2N2, and their vertical and latitudinal distributions have been mapped. In addition, ices of HC3N and possibly C4N2 are also seen in the far-infrared spectrum at high latitudes during the northern winter. The HC(15)N isotopologue has been measured, permitting the inference of the 14N/15N ratio in this species, which differs markedly (lower) than in the bulk nitrogen reservoir (N2). We also describe the search in the CIRS spectrum, and inferred upper limits, for NH3 and CH3CN. CIRS is now observing seasonal transition on Titan and the gas abundance distributions are changing accordingly, acting as tracers of the changing atmospheric circulation. The prospects for further CIRS science in the remaining five years of the Cassini mission are discussed.
The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy wit hout using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD(T) accuracy in the strong correlation limit. The simplest and a theoretically important model for strongly correlated electronic systems is the Hubbard model. In this paper, we establish the utility of the RDM method when employing the $P$, $Q$, $G$, $T1$ and $T2^prime$ conditions in the two-dimension al Hubbard model case and we conduct a thorough study applying the $4times 4$ Hubbard model employing a coefficients. Within the Hubbard Hamilt onian we found that even in the intermediate setting, where $U/t$ is between 4 and 10, the $P$, $Q$, $G$, $T1$ and $T2^prime$ conditions re produced good ground state energies.
In this paper we discuss our insights into several key problems in the identification of the Red Rectangle Bands (RRBs). We have combined three independent sets of observations in order to try to define the constraints guiding the bands. We provide a summary of the general behavior of the bands and review the evidence for a molecular origin of the bands. The extent, composition, and possible absorption effects of the bands are discussed. Comparison spectra of the strongest band obtained at three different spectral resolutions suggests that an intrinsic line width of individual rotational lines can be deduced. Spectroscopic models of several relatively simple molecules were examined in order to investigate where the current data are weak. Suggestions are made for future studies to enhance our understanding of these enigmatic bands.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا