ترغب بنشر مسار تعليمي؟ اضغط هنا

The next generation of gravitational wave (gw) detectors is expected to fully enter into the quantum regime of force and displacement detection. With this aim, it is important to scale up the experiments on opto-mechanical effects from the microscopi c regime to large mass systems and test the schemes that should be applied to reach the quantum regime of detection. In this work we present the experimental characterization of a prototype of massive gw detector, composed of two oscillators with a mass of the order of the kg, whose distance is read by a high finesse optical cavity. The mechanical response function is measured by exciting the oscillators though modulated radiation pressure. We demonstrate two effects crucial for the next generation of massive, cryogenic gw detectors (DUAL detectors): a) the reduction of the contribution of local susceptibility thanks to an average over a large interrogation area. Such effect is measured on the photo-thermal response thanks to the first implementation of a folded-Fabry-Perot cavity; b) the back-action reduction due to negative interference between acoustic modes. Moreover, we obtain the active cooling of an oscillation mode through radiation pressure, on the described mechanical device which is several orders of magnitude heavier than previously demonstrated radiation-pressure cooled systems.
By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both non interacting and interac ting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.
Ultra-cold atoms trapped by light, with their robust quantum coherence and controllability, provide an attractive system for quantum information processing and for simulation of complex problems in condensed matter physics. Many quantum information p rocessing schemes require that individual qubits be manipulated and deterministically entangled with one another, a process that would typically be accomplished by controlled, state-dependent, coherent interactions among qubits. Recent experiments have made progress toward this goal by demonstrating entanglement among an ensemble of atoms confined in an optical lattice. Until now, however, there has been no demonstration of a key operation: controlled entanglement between atoms in isolated pairs. We have used an optical lattice of double-well potentials to isolate and manipulate arrays of paired atoms, inducing controlled entangling interactions within each pair. Our experiment is the first realization of proposals to use controlled exchange coupling in a system of neutral atoms. Although 87Rb atoms have nearly state-independent interactions, when we force two atoms into the same physical location, the wavefunction exchange symmetry of these identical bosons leads to state-dependent dynamics. We observe repeated interchange of spin between atoms occupying different vibrational levels, with a coherence time of more than ten milliseconds. This observation represents the first demonstration of the essential component of a quantum SWAP gate in neutral atoms. The half implementation of SWAP, the sqrt(SWAP) gate, is entangling, and together with single qubit rotations form a set of universal gates for quantum computation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا