ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first spectroscopic detection of ethyl cyanide (C$_2$H$_5$CN) in Titans atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter array (ALMA). T he presence of C$_2$H$_5$CN in Titans ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C$_2$H$_5$CNH$^+$. Here we report the detection of 27 rotational lines from C$_2$H$_5$CN (in 19 separate emission features detected at $>3sigma$ confidence), in the frequency range 222-241 GHz. Simultaneous detections of multiple emission lines from HC$_3$N, CH$_3$CN and CH$_3$CCH were also obtained. In contrast to HC$_3$N, CH$_3$CN and CH$_3$CCH, which peak in Titans northern (spring) hemisphere, the emission from C$_2$H$_5$CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C$_2$H$_5$CN. Radiative transfer models show that most of the C$_2$H$_5$CN is concentrated at altitudes 300-600 km, suggesting production predominantly in the mesosphere and above. Vertical column densities are found to be in the range (2-5)$times10^{14}$ cm$^{-2}$.
We present spectrally and spatially-resolved maps of HNC and HC$_3$N emission from Titans atmosphere, obtained using the Atacama Large Millimeter/submillimeter Array (ALMA) on 2013 November 17. These maps show anisotropic spatial distributions for bo th molecules, with resolved emission peaks in Titans northern and southern hemispheres. The HC$_3$N maps indicate enhanced concentrations of this molecule over the poles, consistent with previous studies of Titans photochemistry and atmospheric circulation. Differences between the spectrally-integrated flux distributions of HNC and HC$_3$N show that these species are not co-spatial. The observed spectral line shapes are consistent with HNC being concentrated predominantly in the mesosphere and above (at altitudes $zgtrsim 400$ km), whereas HC$_3$N is abundant at a broader range of altitudes ($zapprox70$-600 km). From spatial variations in the HC$_3$N line profile, the locations of the HC$_3$N emission peaks are shown to be variable as a function of altitude. The peaks in the integrated emission from HNC and the line core (upper-atmosphere) component of HC$_3$N (at $zgtrsim300$ km) are found to be asymmetric with respect to Titans polar axis, indicating that the mesosphere may be more longitudinally-variable than previously thought. The spatially-integrated HNC and HC$_3$N spectra are modeled using the NEMESIS planetary atmosphere code and the resulting best-fitting disk-averaged vertical mixing ratio (VMR) profiles are found to be in reasonable agreement with previous measurements for these species. Vertical column densities of the best-fitting gradient models for HNC and HC$_3$N are $1.9times10^{13}$ cm$^{-2}$ and $2.3times10^{14}$ cm$^{-2}$, respectively.
Results are presented from the first cometary observations using the Atacama Large Millimeter/Submillimeter Array (ALMA), including measurements of the spatially-resolved distributions of HCN, HNC, H$_2$CO and dust within the comae of two comets: C/2 012 F6 (Lemmon) and C/2012 S1 (ISON), observed at heliocentric distances of 1.5 AU and 0.54 AU, respectively. These observations (with angular resolution $approx0.5$), reveal an unprecedented level of detail in the distributions of these fundamental cometary molecules, and demonstrate the power of ALMA for quantitative measurements of the distributions of molecules and dust in the inner comae of typical bright comets. In both comets, HCN is found to originate from (or within a few hundred km of) the nucleus, with a spatial distribution largely consistent with spherically-symmetric, uniform outflow. By contrast, the HNC distributions are clumpy and asymmetrical, with peaks at cometocentric radii $sim$500-1000~km, consistent with release of HNC in collimated outflow(s). Compared to HCN, the H$_2$CO distribution in comet Lemmon is very extended. The interferometric visibility amplitudes are consistent with coma production of H$_2$CO and HNC from unidentified precursor material(s) in both comets. Adopting a Haser model, the H$_2$CO parent scale-length is found to be a few thousand km in Lemmon and only a few hundred km in ISON, consistent with destruction of the precursor by photolysis or thermal degradation at a rate which scales in proportion to the Solar radiation flux.
This study attempts to establish a link between the reasonably well known nature of the progenitor of SN2011fe and its surrounding environment. This is done with the aim of enabling the identification of similar systems in the vast majority of the ca ses, when distance and epoch of discovery do not allow a direct approach. To study the circumstellar environment of SN2011fe we have obtained high-resolution spectroscopy of SN2011fe on 12 epochs, from 8 to 86 days after the estimated date of explosion, targeting in particular at the time evolution of CaII and NaI. Three main absorption systems are identified from CaII and NaI, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The Galactic and host galaxy reddening, deduced from the integrated equivalent widths (EW) of the NaI lines are E(B-V)=0.011+/-0.002 and E(B-V)=0.014+/-0.002 mag, respectively. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm HI line at the projected SN position (~180 km/s). During the ~3 months covered by our observations, its EW changed by 15.6+/-6.5 mA. This small variation is shown to be compatible with the geometric effects produced by therapid SN photosphere expansion coupled to the patchy fractal structure of the ISM. The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales <100 AU. SN2011fe appears to be surrounded by a clean environment. The lack of blue-shifted, time-variant absorption features is fully consistent with the progenitor being a binary system with a main-sequence, or even another degenerate star.
We investigate the diffuse interstellar band (DIB) spectrum in the interstellar medium of M31. The DEIMOS spectrograph of the W. M. Keck observatory was used to make optical spectroscopic observations of two supergiant stars, MAG 63885 and MAG 70817, in the vicinity of the OB78 association in M31 where the metallicity is approximately equal to solar. The 5780, 5797, 6203, 6283 and 6613 DIBs are detected in both sightlines at velocities matching the M31 interstellar Na I absorption. The spectra are classified and interstellar reddenings are derived for both stars. Diffuse interstellar band (DIB) equivalent widths and radial velocities are presented. The spectrum of DIBs observed in M31 towards MAG 63885 is found to be similar to that observed in the Milky Way. Towards MAG 70817 the DIB equivalent widths per unit reddening are about three times the Galactic average. Compared to observations elsewhere in the Universe, relative to reddening the M31 ISM in the vicinity of OB78 is apparently a highly favourable environment for the formation of DIB carriers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا