ترغب بنشر مسار تعليمي؟ اضغط هنا

At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spec troscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass $approx 10^6$ M$_odot$, disrupting a star of $approx 1$ M$_odot$. Comprehensive UV, optical and X-ray data shows that the early optical emission is dominated by an outflow, with a luminosity evolution $L propto t^2$, consistent with a photosphere expanding at constant velocity ($gtrsim 2000$ km s$^{-1}$), and a line-forming region producing initially blueshifted H and He II profiles with $v=3000-10000$ km s$^{-1}$. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K.~D.~Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission -- the first time this connection has been observed in a TDE. The light curve rise begins $29 pm 2$ days before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at $approx 10^{41}$ erg s$^{-1}$. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.
We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the ASAS-SN survey at an absolute magnitude of $M_Vsim -20.2$ mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows a blue spectral continuum and broad emission lines, consistent with previous TDE candidates. High cadence follow-up spectra show broad Balmer lines and He I in early spectra, with He II making an appearance after $sim70-100$ days. The Balmer lines evolve from a smooth broad profile, through a boxy, asymmetric double-peaked phase consistent with accretion disc emission, and back to smooth at late times. The Balmer lines are unlike typical AGN in that they show a flat Balmer decrement (H$alpha$/H$betasim1.5$), suggesting the lines are collisionally excited rather than being produced via photo-ionisation. The flat Balmer decrement together with the complex profiles suggest that the emission lines originate in a disc chromosphere, analogous to those seen in cataclysmic variables. The low optical depth of material due to a possible partial disruption may be what allows us to observe these double-peaked, collisionally excited lines. The late appearance of He II may be due to an expanding photosphere or outflow, or late-time shocks in debris collisions.
We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z=0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; it peaks at a luminosity of $L approx 10^{ 44}$ erg s$^{-1}$; and the spectrum shows a persistent blackbody temperature $T gtrsim 20,000$ K with broad H I and He II emission. The lines are initially centered at zero velocity, but by 100 days the H I lines disappear while the He II develops a blueshift of $gtrsim 5,000$ km s$^{-1}$. Both the early- and late-time morphologies have been seen in other TDEs, but the complete transition between them is unprecedented. The evolution can be explained by combining an extended atmosphere, undergoing slow contraction, with a wind in the polar direction becoming visible at late times. Our observations confirm that a lack of hydrogen a TDE spectrum does not indicate a stripped star, while the proposed model implies that much of the diversity in TDEs may be due to the observer viewing angle. Modelling the light curve suggests AT2017eqx resulted from the complete disruption of a solar-mass star by a black hole of $sim 10^{6.3} M_odot$. The host is another quiescent, Balmer-strong galaxy, though fainter and less centrally concentrated than most TDE hosts. Radio limits rule out a relativistic jet, while X-ray limits at 500 days are among the deepest for a TDE at this phase.
109 - P. K. Blanchard 2018
We present optical observations of the Type I superluminous supernova (SLSN-I) SN2017dwh at $z!approx!0.13$, which reached $M_{i}!approx!-21$ mag at peak. Spectra taken a few days after peak show an unusual and strong absorption line centered near 32 00AA that we identify with Co II, suggesting a high fraction of synthesized $^{56}$Ni in the ejecta. By $sim!1$ month after peak, SN2017dwh became much redder than other SLSNe-I, instead strongly resembling broad-lined Type Ic supernovae (Ic-BL SNe) with clear suppression of the flux redward of $sim!5000$ AA, providing further evidence for a large mass of Fe-group elements. Late-time upper limits indicate a $^{56}$Ni mass of $lesssim 0.6$ M$_odot$, leaving open the possibility that SN2017dwh produced a $^{56}$Ni mass comparable to SN1998bw ($approx!0.4$ M$_odot$). Fitting the light curve with a combined magnetar and $^{56}$Ni model using ${tt MOSFiT}$, we find that the light curve can easily accommodate such masses without affecting the inferred magnetar parameters. We also find that SN2017dwh occurred in the least-luminous detected host galaxy to date for a SLSN-I, with $M_{B} = -13.5$ mag and an implied metallicity of $Z!sim!0.08$ $Z_odot$. The spectral properties of SN2017dwh provide new evidence linking SLSNe-I with Type Ic-BL SNe, and in particular the high Fe-group abundance may be due to enhanced $^{56}$Ni production or mixing due to asphericity. Finally, we find that SN2017dwh represents the most extreme end of a correlation between continuum shape and Co II absorption strength in the near-peak spectra of SLSNe-I, indicating that Fe-group abundance likely accounts for some of the variation in their spectral shapes.
62 - P. K. Blanchard 2018
[Abridged] We present UV/optical observations of PS16aqv (SN 2016ard), a Type I superluminous supernova (SLSN-I) classified as part of our search for low-$z$ SLSNe. PS16aqv is a fast evolving SLSNe-I that reached a peak absolute magnitude of $M_{r} a pprox -22.1$. The lightcurves exhibit a significant undulation at 30 rest-frame days after peak, with a behavior similar to undulations seen in the slowly fading SLSN-I SN 2015bn. This similarity strengthens the case that fast and slow SLSNe-I form a continuum with a common origin. At $approx!80$ days after peak, the lightcurves exhibit a transition to a slow decline, followed by significant subsequent steepening, indicative of a plateau phase or a second significant undulation. Deep limits at $approx280$ days after peak imply a tight constraint on the nickel mass, $M_{rm Ni} lesssim 0.35$ M$_{odot}$ (lower than for previous SLSNe-I), and indicate that some SLSNe-I do not produce significantly more nickel than normal Type Ic SNe. Using MOSFiT, we model the lightcurve with a magnetar central engine model and find $P_{rm spin} approx 0.9$ ms, $B approx 1.5 times 10^{14}$ G, and $M_{rm ej} approx 16$ M$_{odot}$. The implied rapid spin-down time and large reservoir of available energy coupled with the high ejecta mass may account for the fast evolving lightcurve and slow spectroscopic evolution. We also study the location of PS16aqv in its host galaxy and find that it occurred at an offset of $2.46 pm 0.21$ kpc from the central star-forming region. We find the host galaxy exhibits low metallicity and spatially varying extinction and star formation rate, with the explosion site exhibiting lower values than the central region. The complexity seen in the lightcurves of PS16aqv and other events highlights the importance of obtaining well-sampled lightcurves for exploring deviations from a uniform decline.
67 - P. K. Blanchard 2017
[Abridged] We present observations of PS16dtm, a luminous transient that occurred at the nucleus of a known Narrow-line Seyfert 1 galaxy hosting a 10$^6$ M$_odot$ black hole. The transient was previously claimed to be a Type IIn SLSN due to its lumin osity and hydrogen emission lines. The light curve shows that PS16dtm brightened by about two magnitudes in ~50 days relative to the archival host brightness and then exhibited a plateau phase for about 100 days followed by the onset of fading in the UV. During the plateau PS16dtm showed no color evolution, maintained a blackbody temperature of 1.7 x 10$^4$ K, and radiated at approximately $L_{Edd}$ of the SMBH. The spectra exhibit multi-component hydrogen emission lines and strong FeII emission, show little evolution with time, and closely resemble the spectra of NLS1s while being distinct from those of Type IIn SNe. Moreover, PS16dtm is undetected in the X-rays to a limit an order of magnitude below an archival X-ray detection of its host galaxy. These observations strongly link PS16dtm to activity associated with the SMBH and are difficult to reconcile with a SN origin or any known form of AGN variability, and therefore we argue that it is a TDE in which the accretion of the stellar debris powers the rise in the continuum and excitation of the pre-existing broad line region, while providing material that obscures the X-ray emitting region of the pre-existing AGN accretion disk. A detailed TDE model fit to the light curve indicates that PS16dtm will remain bright for several years; we further predict that the X-ray emission will reappear on a similar timescale as the accretion rate declines. Finally, we place PS16dtm in the context of other TDEs and find that TDEs in AGN galaxies are an order of magnitude more efficient and reach Eddington luminosities, likely due to interaction of the stellar debris with the pre-existing accretion disk.
We present and analyse an extensive dataset of the superluminous supernova (SLSN) LSQ14mo (z = 0.256), consisting of a multi-colour lightcurve from -30 d to +70 d in the rest-frame and a series of 6 spectra from PESSTO covering -7 d to +50 d. This is among the densest spectroscopic coverage, and best-constrained rising lightcurve, for a fast-declining hydrogen-poor SLSN. The bolometric lightcurve can be reproduced with a millisecond magnetar model with ~ 4 M_sol ejecta mass, and the temperature and velocity evolution is also suggestive of a magnetar as the power source. Spectral modelling indicates that the SN ejected ~ 6 M_sol of CO-rich material with a kinetic energy of ~ 7 x 10^51 erg, and suggests a partially thermalised additional source of luminosity between -2 d and +22 d. This may be due to interaction with a shell of material originating from pre-explosion mass loss. We further present a detailed analysis of the host galaxy system of LSQ14mo. PESSTO and GROND imaging show three spatially resolved bright regions, and we used the VLT and FORS2 to obtain a deep (five-hour exposure) spectra of the SN position and the three star-forming regions, which are at a similar redshift. The FORS spectrum at +300 days shows no trace of SN emission lines and we place limits on the strength of [O I] from comparisons with other Ic SNe. The deep spectra provides a unique chance to investigate spatial variations in the host star-formation activity and metallicity. The specific star-formation rate is similar in all three components, as is the presence of a young stellar population. However, the position of LSQ14mo exhibits a lower metallicity, with 12 + log(O/H) = 8.2 in both the R23 and N2 scales (corresponding to ~ 0.3 Z_sol). We propose that the three bright regions in the host system are interacting, which thus triggers star-formation and forms young stellar populations.
Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below $sim 3000$ AA. Yan et al (2016) have recently presented HST UV spectra and attributed the UV flux to low metallicity and hence reduced line blanketing. Here we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite a typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by $sim 10$-15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting $M_{rm ej} = 4 (0.2/kappa)$ M$_odot$, where $kappa$ is the opacity in cm$^2$g$^{-1}$, and forming a magnetar with spin period $P=2$ ms, and $B=2times10^{14}$ G (lower than other SLSNe with comparable rise-times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, $Z=0.18$ Z$_odot$, is comparable to other SLSNe.
We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova SN 2015bn, at redshift z=0.1136, spanning +250-400 d after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag/(100 d) t o 1.7 mag/(100 d), suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium and magnesium. There are no obvious signatures of circumstellar interaction or large nickel mass. We show that the spectrum at +400 d is virtually identical to a number of energetic Type Ic supernovae such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between `hypernovae/long gamma-ray bursts and superluminous supernovae. A single explosion mechanism may unify these events that span absolute magnitudes of -22 < M_B < -17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7-30 M$_odot$ of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O II $lambda$7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.
We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift $z=0.1136$. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brigh ter ($M_Uapprox-23.1$) and in a fainter galaxy ($M_Bapprox-16.0$) than other SLSNe at $zsim0.1$. We used this opportunity to collect the most extensive dataset for any SLSN I to date, including densely-sampled spectroscopy and photometry, from the UV to the NIR, spanning $-$50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30-50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20-30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a $gtrsim10,{rm M}_odot$ stripped progenitor exploding with $sim 10^{51},$erg kinetic energy, forming a magnetar with a spin-down timescale of $sim20$ days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario -- interaction with $sim20,{rm M}_odot$ of dense, inhomogeneous circumstellar material -- can be tested with continuing radio follow-up.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا