ترغب بنشر مسار تعليمي؟ اضغط هنا

225 - M. Loewe , L. Monje , R. Zamora 2021
In this article we extend a previous discussion about the influence of an external magnetic field on renormalons in a self interacting scalar theory by including now temperature effects, in the imaginary formalism, together with an external weak exte rnal magnetic field. We show that the location of poles in the Borel plane does not change, getting their residues, however, a dependence on temperature and on the magnetic field.The effects of temperature and the magnetic field strength on the residues turn out to be opposite. We present a detailed discussion about the evolution of these residues, showing technical details involved in the calculation.
We revisit the calculation of the fermion self-energy in QED in the presence of a magnetic field. We show that, after carrying out the renormalization procedure and identifying the most general perturbative tensor structure for the modified fermion { mass operator} in the large field limit, the mass develops an imaginary part. This happens when account is made of the sub-leading contributions associated to Landau levels other than the lowest one. The imaginary part is associated to a spectral density describing the spread of the mass function in momentum. The center of the distribution corresponds to the magnetic-field modified mass. The width becomes small as the field intensity increases in such a way that for asymptotically large values of the field, when the separation between Landau levels becomes also large, the mass function describes a stable particle occupying only the lowest Landau level. For large but finite values of the magnetic field, the spectral density represents a finite probability for the fermion to occupy Landau levels other than the LLL.
1ES 1927+654 is a nearby active galactic nucleus (AGN) which underwent a changing-look event in early 2018, developing prominent broad Balmer lines which were absent in previous observations. We have followed up this object in the X-rays with an ongo ing campaign that started in May 2018, and that includes 265 NICER (for a total of 678ks) and 14 Swift/XRT (26ks) observations, as well as three simultaneous XMM-Newton/NuSTAR (158/169 ks) exposures. In the X-rays, 1ES 1927+654 shows a behaviour unlike any previously known AGN. The source is extremely variable both in spectral shape and flux, and does not show any correlation between X-ray and UV flux on timescales of hours or weeks/months. After the outburst the power-law component almost completely disappeared, and the source showed an extremely soft continuum dominated by a blackbody component. The temperature of the blackbody increases with the luminosity, going from $kTsim 80$eV (for a 0.3--2keV luminosity of $L_{0.3-2}sim 10^{41.5}rm,erg,s^{-1}$) to $sim 200$eV (for $L_{0.3-2}sim 10^{44}rm,erg,s^{-1}$). The spectra show evidence of ionized outflows, and of a prominent feature at $sim 1$keV, which can be reproduced by a broad emission line. The unique characteristics of 1ES 1927+654 in the X-ray band suggest that it belongs to a new type of changing-look AGN. Future X-ray surveys might detect several more objects with similar properties.
We present the drastic transformation of the X-ray properties of the active galactic nucleus 1ES 1927+654, following a changing-look event. After the optical/UV outburst the power-law component, produced in the X-ray corona, disappeared, and the spec trum of 1ES 1927+65 instead became dominated by a blackbody component ($kTsim 80-120$ eV). This implies that the X-ray corona, ubiquitously found in AGN, was destroyed in the event. Our dense $sim 450$ day long X-ray monitoring shows that the source is extremely variable in the X-ray band. On long time scales the source varies up to $sim 4$ dex in $sim 100$ days, while on short timescales up to $sim2$ dex in $sim 8$ hours. The luminosity of the source is found to first show a strong dip down to $sim 10^{40}rm,erg,s^{-1}$, and then a constant increase in luminosity to levels exceeding the pre-outburst level $gtrsim $300 days after the optical event detection, rising up asymptotically to $sim 2times10^{44}rm,erg,s^{-1}$. As the X-ray luminosity of the source increases, the X-ray corona is recreated, and a very steep power-law component ($Gammasimeq 3$) reappears, and dominates the emission for 0.3-2 keV luminosities $gtrsim 10^{43.7}rm,erg,s^{-1}$, $sim 300$ days after the beginning of the event. We discuss possible origins of this event, and speculate that our observations could be explained by the interaction between the accretion flow and debris from a tidally disrupted star. Our results show that changing-look events can be associated with dramatic and rapid transformations of the innermost regions of accreting SMBHs.
One of the advantages of the finite energy sum rules is the fact that every operator in the operator product expansion series can be selected individually by the use of an appropriate kernel function which removes other operator poles. This character istic is maintained by QCD systems in the presence of external homogeneous magnetic field, providing interesting information about the magnetic evolution of QCD and hadronic parameters. In this work finite energy sum rules are applied on QCD in the light quark sector, combining axial and pseudoscalar channels in the presence of an external homogeneous magnetic field, obtaining the magnetic evolution of the light quark masses, pion mass, the pion decay constant, the gluon condensate and the continuum hadronic threshold.
We present an analytic method to compute the one-loop magnetic correction to the gluon polarization tensor starting from the Landau-level representation of the quark propagator in the presence of an external magnetic field. We show that the general e xpression contains the vacuum contribution that can be isolated from the zero-field limit for finite gluon momentum. The general tensor structure for the gluon polarization also contains two spurious terms that do not satisfy the transversality properties. However, we also show that the coefficients of this structures vanish and thus do not contribute to the polarization tensor, as expected. In order to check the validity of the expressions we study the strong and weak field limits and show that well established results are reproduced. The findings can be used to study the conditions for gluons to equilibrate with the magnetic field produced during the early stages of a relativistic heavy-ion collision.
Using vector and axial-vector correlators within finite energy sum rules with inputs from a chiral quark model, coupled to the Polyakov loop, with nonlocal vector interactions, we extend our previous work to confirm the equivalence between the contin uum threshold $s_0$ and the trace of the Polyakov loop $Phi$ as order parameters for the deconfinement transition at finite temperature $T$ and quark chemical potential $mu$. The obtained results are in agreement with our initial conclusion, where we showed that $s_0(T,mu)$ and $Phi(T,mu)$ provide the same information for the QCD deconfinement transition.
We present an analysis about the influence of an external magnetic field on renormalons in a self interacting theory $lambda phi ^{4}$. In the weak magnetic field region, using an appropriate expansion for the Schwinger propagators, we find new renor malons as poles on the real axis of the Borel plane, whose position do not depend on the magnetic field, but where the residues acquire in fact a magnetic dependence. In the strong magnetic limit, working in the lowest Landau level approximation (LLLA), these new poles are not longer present. We compare the magnetic scenario with previous results in the literature concerning thermal effects on renormalons in this theory.
219 - M. Loewe , L. Monje , E. Mu~noz 2019
In this article, a new perspective for obtaining the magnetic evolution of $pi-pi $ scattering lengths in the frame of the linear sigma model is presented. When computing the relevant one-loop diagrams that contribute to these parameters, the sum ove r Landau levels --emerging from the expansion of the Schwinger propagator-- is handled in a novel way that could also be applied to the calculation of other magnetic-type corrections. Essentially, we have obtained an expansion in terms of Hurwitz Zeta functions. It is necessary to regularize our expressions by an appropriate physical subtraction when $|qB| rightarrow 0$ ($q$ the meson charge and $B$ the magnetic field strength). In this way, we are able to interpolate between the very high magnetic field strength region, usually handled in terms of the Lowest Landau Level (LLA) approximation, and the weak field region, discussed in a previous paper by some of us, which is based on an appropriate expansion of the Schwinger propagator up to order $|qB|^{2}$. Our results for the scattering lengths parameters produce a soft evolution in a wide region of magnetic field strengths, reducing to the previously found expressions in both limits.
In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperat ure for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا