ترغب بنشر مسار تعليمي؟ اضغط هنا

Paris (PArallel, Robust, Interface Simulator) is a finite volume code for simulations of immiscible multifluid or multiphase flows. It is based on the one-fluid formulation of the Navier-Stokes equations where different fluids are treated as one mate rial with variable properties, and surface tension is added as a singular interface force. The fluid equations are solved on a regular structured staggered grid using an explicit projection method with a first-order or second-order time integration scheme. The interface separating the different fluids is tracked by a Front-Tracking (FT) method, where the interface is represented by connected marker points, or by a Volume-of-Fluid (VOF) method, where the marker function is advected directly on the fixed grid. Paris is written in Fortran95/2002 and parallelized using MPI and domain decomposition. It is based on several earlier FT or VOF codes such as Ftc3D, Surfer or Gerris. These codes and similar ones, as well as Paris, have been used to simulate a wide range of multifluid and multiphase flows.
The computation of flows with large density contrasts is notoriously difficult. To alleviate the difficulty we consider a discretization of the Navier-Stokes equation that advects mass and momentum in a consistent manner. Incompressible flow with cap illary forces is modeled and the discretization is performed on a staggered grid of Marker and Cell type. The Volume-of-Fluid method is used to track the interface and a Height-Function method is used to compute surface tension. The advection of the volume fraction is performed using either the Lagrangian-Explicit / CIAM (Calcul dInterface Affine par Morceaux) method or the Weymouth and Yue (WY) Eulerian-Implicit method. The WY method conserves fluid mass to machine accuracy provided incompressibility is satisfied. To improve the stability of these methods momentum fluxes are advected in a manner consistent with the volume-fraction fluxes, that is a discontinuity of the momentum is advected at the same speed as a discontinuity of the density. To find the density on the staggered cells on which the velocity is centered, an auxiliary reconstruction of the density is performed. The method is tested for a droplet without surface tension in uniform flow, for a droplet suddenly accelerated in a carrying gas at rest at very large density ratio without viscosity or surface tension, for the Kelvin-Helmholtz instability, for a 3mm-diameter falling raindrop and for an atomizing flow in air-water conditions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا