ترغب بنشر مسار تعليمي؟ اضغط هنا

407 - M. A. Green , J. W. Moffat 2020
Renormalization group methods are applied to a scalar field within a finite, nonlocal quantum field theory formulated perturbatively in Euclidean momentum space. It is demonstrated that the triviality problem in scalar field theory, the Higgs boson m ass hierarchy problem and the stability of the vacuum do not arise as issues in the theory. The scalar Higgs field has no Landau pole.
The equation of motion in the generally covariant modified gravity (MOG) theory leads, for weak gravitational fields and non-relativistic motion, to a modification of Newtons gravitational acceleration law. In addition to the metric $g_{mu u}$, MOG h as a vector field $phi_mu$ that couples with gravitational strength to all baryonic matter. The gravitational coupling strength is determined by the MOG parameter $alpha$, while parameter $mu$ is the small effective mass of $phi_mu$. The MOG acceleration law has been demonstrated to fit a wide range of galaxies, galaxy clusters and the Bullet Cluster and Train Wreck Cluster mergers. For the SPARC sample of rotationally supported spiral and irregular galaxies, McGaugh et al. [24] (MLS) have found a radial acceleration relation (RAR) that relates accelerations derived from galaxy rotation curves to Newtonian accelerations derived from galaxy mass models. Using the same SPARC galaxy data, mass models independently derived from that data, and MOG parameters $alpha$ and $mu$ that run with galaxy mass, we demonstrate that adjusting galaxy parameters within $pm 1$-sigma bounds can yield MOG predictions consistent with the given rotational velocity data. Moreover, the same adjusted parameters yield a good fit to the RAR of MLS, with the RAR parameter $a_0=(5.4pm .3)times 10^{-11},{rm m/s^2}$.
Neutron diffraction measurements have been performed on a powder sample of BaMn2As2 over the temperature T range from 10 K to 675 K. These measurements demonstrate that this compound exhibits collinear antiferromagnetic ordering below the Neel temper ature T_N = 625(1) K. The ordered moment mu = 3.88(4) mu_B/Mn at T = 10 K is oriented along the c axis and the magnetic structure is G-type, with all nearest-neighbor Mn moments antiferromagnetically aligned. The value of the ordered moment indicates that the oxidation state of Mn is Mn^{2+} with a high spin S = 5/2. The T dependence of mu suggests that the magnetic transition is second-order in nature. In contrast to the closely related AFe2As2 (A = Ca, Sr, Ba, Eu) compounds, no structural distortion is observed in the magnetically ordered state of BaMn2As2.
Recent investigations of the superconducting iron-arsenide families have highlighted the role of pressure, be it chemical or mechanical, in fostering superconductivity. Here we report that CaFe2As2 undergoes a pressure-induced transition to a non-mag netic, volume collapsed tetragonal phase, which becomes superconducting at lower temperature. Spin-polarized total-energy calculations on the collapsed structure reveal that the magnetic Fe moment itself collapses, consistent with the absence of magnetic order in neutron diffraction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا