ترغب بنشر مسار تعليمي؟ اضغط هنا

279 - R Guichard , M Richter , J-M Rost 2013
At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a mi nimal model and an elaborate description. Both approaches are based on rate equations and take into acccout a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude, that photoionization up to a charge of 5+ can be described by the minimal model. For higher charges, the experimental ionization yields systematically exceed the elaborate rate based prediction.
We examine the mystery of the disputed high-magnetization alpha-Fe16N2 phase, employing the Heyd-Scuseria-Ernzerhof screened hybrid functional method, perturbative many-body corrections through the GW approximation, and onsite Coulomb correlations th rough the GGA+U method. We present a first-principles computation of the effective on-site Coulomb interaction (Hubbard U) between localized 3d electrons employing the constrained random-phase approximation (cRPA), finding only somewhat stronger on-site correlations than in bcc Fe. We find that the hybrid functional method, the GW approximation, and the GGA+U method (using parameters computed from cRPA) yield an average spin moment of 2.9, 2.6 - 2.7, and 2.7 mu_B per Fe, respectively.
We analyze a single-particle Mach-Zehnder interferometer experiment in which the path length of one arm may change (randomly or systematically) according to the value of an external two-valued variable $x$, for each passage of a particle through the interferometer. Quantum theory predicts an interference pattern that is independent of the sequence of the values of $x$. On the other hand, corpuscular models that reproduce the results of quantum optics experiments carried out up to this date show a reduced visibility and a shift of the interference pattern depending on the details of the sequence of the values of $x$. The proposed experiment will show that: (1) it can be described by quantum theory, and thus not by the current corpuscular models, or (2) it cannot be described by quantum theory but can be described by the corpuscular models or variations thereof, or (3) it can neither be described by quantum theory nor by corpuscular models. Therefore, the proposed experiment can be used to determine to what extent quantum theory provides a description of observed events beyond the usual statistical level.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا