ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform a quantitative morphological comparison between the hosts of Active Galactic Nuclei (AGN) and quiescent galaxies at intermediate redshifts (z~0.7). The imaging data are taken from the large HST/ACS mosaics of the GEMS and STAGES surveys. O ur main aim is to test whether nuclear activity at this cosmic epoch is triggered by major mergers. Using images of quiescent galaxies and stars, we create synthetic AGN images to investigate the impact of an optical nucleus on the morphological analysis of AGN hosts. Galaxy morphologies are parameterized using the asymmetry index A, concentration index C, Gini coefficient G and M20 index. A sample of ~200 synthetic AGN is matched to 21 real AGN in terms of redshift, host brightness and host-to-nucleus ratio to ensure a reliable comparison between active and quiescent galaxies. The optical nuclei strongly affect the morphological parameters of the underlying host galaxy. Taking these effects into account, we find that the morphologies of the AGN hosts are clearly distinct from galaxies undergoing violent gravitational interactions. In fact, the host galaxies distributions in morphological descriptor space are more similar to undisturbed galaxies than major mergers. Intermediate-luminosity (Lx < 10^44 erg/s) AGN hosts at z~0.7 show morphologies similar to the general population of massive galaxies with significant bulges at the same redshifts. If major mergers are the driver of nuclear activity at this epoch, the signatures of gravitational interactions fade rapidly before the optical AGN phase starts, making them undetectable on single-orbit HST images, at least with usual morphological descriptors. This could be investigated in future synthetic observations created from numerical simulations of galaxy-galaxy interactions.
We used 40 high resolution, high S/N QSO spectra at 2.1<z<4.7 to search for the signature of the proximity effect in the HI Lyalpha forest. Comparing the effective optical depth near each QSO with the expected one, we clearly detect the proximity eff ect on the combined QSO sample and towards each individual QSO. The observed proximity effect strength distribution (PESD) is asymmetric towards a weak effect. We demonstrate that this is not simply an effect of gravitational clustering around QSOs. Comparing simulated PESDs with observations, we argue that the averaging method to determine the UVB intensity J is heavily biased towards high values because of the PESD asymmetry. Using instead the mode of the PESD provides an unbiased estimate of J. For our sample its modal value is log(J)=-21.51+/-0.15 (in units of ergcm^-2s^-1Hz^-1sr^-1) at z=2.73. We estimated the excess HI absorption attributed to gravitational clustering. On scales of ~3 Mpc, only a minority of QSOs shows overdensities of up to a factor of a few in tau_eff; these are exactly the objects with the weakest proximity effects. After removing them, we redetermined the UVB intensity arriving at log(J)=-21.46+0.14-0.21. This is the most accurate measurement of J to date. We present a new diagnostic based on the shape of the PESD which strongly supports our conclusion that there is no systematic overdensity bias for the proximity effect. This additional diagnostic breaks the otherwise unavoidable degeneracy of the proximity effect between UVB and overdensity. We estimated the redshift evolution of J and found tentative evidence for a mild decrease with increasing redshift. Our results are in excellent agreement with predictions for the evolving UVB intensity, supporting the notion of a substantial contribution of star-forming galaxies.
We exploit a set of high signal-to-noise (~70), low-resolution (R~800) quasar spectra to search for the signature of the so-called proximity effect in the HI Ly alpha forest. Our sample consists of 17 bright quasars in the redshift range 2.7<z<4.1. A nalysing the spectra with the flux transmission technique, we detect the proximity effect in the sample at high significance. We use this to estimate the average intensity of the metagalactic UV background, assuming it to be constant over this redshift range. We obtain a value of J = (9+-4)x10^{-22}ergcm^{-2}s^{-1}Hz^{-1}sr^{-1}, in good agreement with previous measurements at similar z. We then apply the same procedure to individual lines of sight, finding a significant deficit in the effective optical depth close to the emission redshift in every single object except one (which by a different line of evidence does nevertheless show a noticeable proximity effect). Thus, we clearly see the proximity effect as a universal phenomenon associated with individual quasars. Using extensive Monte-Carlo simulations to quantify the error budget, we assess the expected statistical scatter in the strength of the proximity effect due to shot noise (cosmic variance). The observed scatter is larger than the predicted one, so that additional sources of scatter are required. We rule out a dispersion of spectral slopes as a significant contributor. Possible effects are long time-scale variability of the quasars and/or gravitational clustering of Ly alpha forest lines. We speculate on the possibility of using the proximity effect as a tool to constrain individual quasar ages, finding that ages between ~10^6 and ~10^8 yrs might produce a characteristic signature in the optical depth profile towards the QSO. We identify one possible candidate for this effect in our sample.
The Hamburg/ESO quasar HE 1113-0641 is found to be a quadruple gravitational lens, based on observations with the twin 6.5m Magellan telescopes at the Las Campanas Observatory, and subsequently with the Hubble Space Telescope. The z_S=1.235 quasar ap pears in a cross configuration, with i band magnitudes ranging from 18.0 to 18.8. With a maximum image separation of 0.67, this is the smallest-separation quadruple ever identified using a ground-based optical telescope. PSF subtraction reveals a faint lensing galaxy. A simple lens model succeeds in predicting the observed positions of the components, but fails to match their observed flux ratios by up to a magnitude. We estimate the redshift of the lensing galaxy to be z_L~0.7. Time delay estimates are on the order of a day, suggesting that the flux ratio anomalies are not due to variability of the quasar, but may result from substructure or microlensing in the lens galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا