ترغب بنشر مسار تعليمي؟ اضغط هنا

Because the cuprate superconductors are doped Mott insulators, it would be advantageous to solve even a toy model that exhibits both Mottness and superconductivity. We consider the Hatsugai-Kohmoto model, an exactly solvable system that is a prototyp ical Mott insulator above a critical interaction strength at half filling. Upon doping or reducing the interaction strength, our exact calculations show that the system becomes a non-Fermi liquid metal with a superconducting instability. In the presence of a weak pairing interaction, the instability produces a thermal transition to a superconducting phase, which is distinct from the BCS state, as evidenced by a gap-to-transition temperature ratio exceeding the universal BCS limit. The elementary excitations of this superconductor are not Bogoliubov quasiparticles but rather superpositions of doublons and holons, composite excitations signaling that the superconducting ground state of the doped Mott insulator inherits the non-Fermi liquid character of the normal state. An unexpected feature of this model is that it exhibits a superconductivity-induced transfer of spectral weight from high to low energies as seen in the cuprates as well as a suppression of the superfluid density relative to that in BCS theory.
We study entanglement in the Hatsugai-Kohmoto model, which exhibits a continuous interaction-driven Mott transition. By virtue of the all-to-all nature of its center-of-mass conserving interactions, the model lacks dynamical spectral weight transfer, which is the key to intractability of the Hubbard model for $d>1$. In order to maintain a non-trivial Mott-like electron propagator, SU(2) symmetry is preserved in the Hamiltonian, leading to a ground state that is mixed on both sides of the phase transition. Because of this mixture, even the metal in this model is unentangled between any pair of sites, unlike free fermions whose ground state carries a filling-dependent site-site entanglement. We focus on the scaling behavior of the one- and two-site entropies $s_1$ and $s_2$, as well as the entropy density $s$, of the ground state near the Mott transition. At low temperatures in the two-dimensional Hubbard model, it was observed numerically (Walsh et al., 2018, arXiv:1807.10409) that $s_1$ and $s$ increase continuously into the metal, across a first-order Mott transition. In the Hatsugai-Kohmoto model, $s_1$ acquires the constant value $ln4$ even at the Mott transition. The ground states non-trivial entanglement structure is manifest in $s_2$ and $s$ which decrease into the metal, and thereby act as sharp signals of the Mott transition in any dimension. Specifically, we find that in one dimension, $s_2$ and $s$ exhibit kinks at the transition while in $d=2$, only $s$ exhibits a kink.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا