ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in July 2009. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.14. Simultaneous ful l Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on 3D semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. The most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km/s. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km/s. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the Bifrost code. The computational domain spans from the upper convection zone to the lower corona. In the modeled chromosphere the rising flux sheet produces a large, cool, magnetized bubble. We compare this bubble with the observed ones and find excellent agreement, including similar field strengths and velocity signals in the photosphere and chromosphere, temperature deficits, ascent speeds, expansion velocities, and lifetimes.
We present a method to study the penumbral fine structure using data obtained by the spectropolarimeter onboard HINODE. For the first time, the penumbral filaments can be considered as resolved in spectropolarimetric measurements. This enables us to use inversion codes with only one-component model atmospheres, and thus assign the obtained stratifications of plasma parameters directly to the penumbral fine structure. This approach is applied to the limb-side part of the penumbra in active region NOAA 10923. The preliminary results show a clear dependence of the plasma parameters on continuum intensity in the inner penumbra, i.e. weaker and horizontal magnetic field along with increased line-of-sight velocity are found in the low layers of the bright filaments. The results in the mid penumbra are ambiguous and future analyses are necessary to unveil the magnetic field structure and other plasma parameters there.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا