ترغب بنشر مسار تعليمي؟ اضغط هنا

The announcement by the IceCube Collaboration of the observation of 28 cosmic neutrino candidates has been greeted with a great deal of justified excitement. The data reported so far depart by 4.3sigma from the expected atmospheric neutrino backgroun d, which raises the obvious question: Where in the Cosmos are these neutrinos coming from? We review the many possibilities which have been explored in the literature to address this question, including origins at either Galactic or extragalactic celestial objects. For completeness, we also briefly discuss new physics processes which may either explain or be constrained by IceCube data.
If the fundamental mass scale of superstring theory is as low as few TeVs, the massive modes of vibrating strings, Regge excitations, will be copiously produced at the Large Hadron Collider (LHC). We discuss the complementary signals of low mass supe rstrings at the proposed electron-positron facility (CLIC), in e^+e^- and gamma gamma collisions. We examine all relevant four-particle amplitudes evaluated at the center of mass energies near the mass of lightest Regge excitations and extract the corresponding pole terms. The Regge poles of all four-point amplitudes, in particular the spin content of the resonances, are completely model independent, universal properties of the entire landscape of string compactifications. We show that gamma gamma to e^+ e^- scattering proceeds only through a spin-2 Regge state. We estimate that for this particular channel, string scales as high as 4 TeV can be discovered at the 11sigma level with the first fb^{-1} of data collected at a center-of-mass energy approx 5 TeV. We also show that for e^+e^- annihilation into fermion-antifermion pairs, string theory predicts the precise value, equal 1/3, of the relative weight of spin 2 and spin 1 contributions. This yields a dimuon angular distribution with a pronounced forward-backward asymmetry, which will help distinguishing between low mass strings and other beyond the standard model scenarios.
We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundam ental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first resonant pole to determine the discovery potential of LHC for the first Regge excitations of the quark and gluon. Remarkably, the reach of LHC after a few years of running can be as high as 6.8 TeV. Even after the first 100 pb^{-1} of integrated luminosity, string scales as high as 4.0 TeV can be discovered. For string scales as high as 5.0 TeV, observations of resonant structures in pp to {rm direct} gamma + jet can provide interesting corroboration for string physics at the TeV-scale.
TeV gamma-rays can result from the photo-de-excitation of PeV cosmic ray nuclei after their parents have undergone photo-disintegration in an environment of ultraviolet photons. This process is proposed as a candidate explanation of the recently disc overed HESS source at the edge of Westerlund 2. The UV background is provided by Lyman-alpha emission within the rich O and B stellar environment. The HESS flux results if there is efficient acceleration at the source of lower energy nuclei. The requirement that the Lorentz-boosted ultraviolet photons reach the Giant Dipole resonant energy (~ 20 MeV) implies a strong suppression of the gamma-ray spectrum compared to an E_gamma^{-2} behavior at energies below about 1 TeV. This suppression is not apparent in the lowest-energy Westerlund 2 datum, but will be probed by the upcoming GLAST mission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا