ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we study the Casimir energy of QCD within the Gribov-Zwanziger approach. In this model non-perturbative effects of gauge copies are properly taken into account. We show that the computation of the Casimir energy for the MIT bag model wi thin the (refined) Gribov-Zwanziger approach not only gives the correct sign but it also gives an estimate for the radius of the bag.
We consider a Casimir apparatus consisting of two perfectly conducting parallel plates, subject to the weak gravitational field of the Earth. The aim of this paper is the calculation of the energy-momentum tensor of this system for a free, real massl ess scalar field satisfying Neumann boundary conditions on the plates. The small gravity acceleration (here considered as not varying between the two plates) allows us to perform all calculations to first order in this parameter. Some interesting results are found: a correction, depending on the gravity acceleration, to the well-known Casimir energy and pressure on the plates. Moreover, this scheme predicts a tiny force in the upwards direction acting on the apparatus. These results are supported by two consistency checks: the covariant conservation of the energy-momentum tensor and the vanishing of its regularized trace, when the scalar field is conformally coupled to gravity.
In the framework of designing laboratory tests of relativistic gravity, we investigate the gravitational field produced by the magnetic field of a solenoid. Observing this field might provide a mean of testing whether stresses gravitate as predicted by Einsteins theory. A previous study of this problem by Braginsky, Caves and Thorne predicted that the contribution to the gravitational field resulting from the stresses of the magnetic field and of the solenoid walls would cancel the gravitational field produced by the mass-energy of the magnetic field, resulting in a null magnetically-generated gravitational force outside the solenoid. They claim that this null result, once proved experimentally, would demonstrate the stress contribution to gravity. We show that this result is incorrect, as it arises from an incomplete analysis of the stresses, which neglects the axial stresses in the walls. Once the stresses are properly evaluated, we find that the gravitational field outside a long solenoid is in fact independent of Maxwell and material stresses, and it coincides with the newtonian field produced by the linear mass distribution equivalent to the density of magnetic energy stored in a unit length of the solenoid. We argue that the gravity of Maxwell stress can be directly measured in the vacuum region inside the solenoid, where the newtonian noise is absent in principle, and the gravity generated by Maxwell stresses is not screened by the negative gravity of magnetic-induced stresses in the solenoid walls.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا