ترغب بنشر مسار تعليمي؟ اضغط هنا

We combine two aspects of magnetic frustration, multiferroicity and emergent quasi-particles in spin liquids, by studying magneto-electric monopoles. Spin ice offers to couple these emergent topological defects to external fields, and to each other, in unusual ways, making possible to lift the degeneracy underpinning the spin liquid and to potentially stabilize novel forms of charge crystals, opening the path to a magnetic crystallography. In developing the general phase diagram including nearest-neighbour coupling, Zeeman energy, electric and magnetic dipolar interactions, we uncover the emergence of a bi-layered crystal of singly-charged monopoles, whose stability, remarkably, is strengthened by an external [110] magnetic field. Our theory is able to account for the ordering process of Tb2Ti2O7 in large field for reasonably small electric energy scales.
The search for new quantum phases, especially in frustrated magnets, is central to modern condensed matter physics. One of the most promising places to look is in rare-earth pyrochlore magnets with highly-anisotropic exchange interactions, materials closely related to the spin ices Ho2Ti2O7 and Dy2Ti2O7. Here we establish a general theory of magnetic order in these materials. We find that many of their most interesting properties can be traced back to the accidental degeneracies where phases with different symmetry meet. These include the ordered ground state selection by fluctuations in Er2Ti2O7, the dimensional-reduction observed in Yb2Ti2O7, and the absence of magnetic order in Er2Sn2O7.
We study the low-temperature behaviour of spin ice when uniaxial pressure induces a tetragonal distortion. There is a phase transition between a Coulomb liquid and a fully magnetised phase. Unusually, it combines features of discontinuous and continu ous transitions: the order parameter exhibits a jump, but this is accompanied by a divergent susceptibility and vanishing domain wall tension. All these aspects can be understood as a consequence of an emergent SU(2) symmetry at the critical point. We map out a possible experimental realisation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا