ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new proof of well-posedness of stochastic evolution equations in variational form, relying solely on a (nonlinear) infinite-dimensional approximation procedure rather than on classical finite-dimensional projection arguments of Galerkin type.
We provide sufficient conditions on the coefficients of a stochastic evolution equation on a Hilbert space of functions driven by a cylindrical Wiener process ensuring that its mild solution is positive if the initial datum is positive. As an applica tion, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model via Musielas stochastic PDE.
We establish n-th order Frechet differentiability with respect to the initial datum of mild solutions to a class of jump-diffusions in Hilbert spaces. In particular, the coefficients are Lipschitz continuous, but their derivatives of order higher tha n one can grow polynomially, and the (multiplicative) noise sources are a cylindrical Wiener process and a quasi-left-continuous integer-valued random measure. As preliminary steps, we prove well-posedness in the mild sense for this class of equations, as well as first-order G^ateaux differentiability of their solutions with respect to the initial datum, extending previous results in several ways. The differentiability results obtained here are a fundamental step to construct classical solutions to non-local Kolmogorov equations with sufficiently regular coefficients by probabilistic means.
We prove existence and uniqueness of strong solutions for a class of semilinear stochastic evolution equations driven by general Hilbert space-valued semimartingales, with drift equal to the sum of a linear maximal monotone operator in variational fo rm and of the superposition operator associated to a random time-dependent monotone function defined on the whole real line. Such a function is only assumed to satisfy a very mild symmetry-like condition, but its rate of growth towards infinity can be arbitrary. Moreover, the noise is of multiplicative type and can be path-dependent. The solution is obtained via a priori estimates on solutions to regularized equations, interpreted both as stochastic equations as well as deterministic equations with random coefficients, and ensuing compactness properties. A key role is played by an infinite-dimensional Doob-type inequality due to Metivier and Pellaumail.
In this paper we discuss a family of viscous Cahn-Hilliard equations with a non-smooth viscosity term. This system may be viewed as an approximation of a forward-backward parabolic equation. The resulting problem is highly nonlinear, coupling in the same equation two nonlinearities with the diffusion term. In particular, we prove existence of solutions for the related initial and boundary value problem. Under suitable assumptions, we also state uniqueness and continuous dependence on data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا