ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the linear and nonlinear evolution of the tearing instability on thin current sheets by means of two-dimensional numerical simulations, within the framework of compressible, resistive magnetohydrodynamics. In particular we analyze the behavi or of current sheets whose inverse aspect ratio scales with the Lundquist number $S$ as $S^{-1/3}$. This scaling has been recently recognized to yield the threshold separating fast, ideal reconnection, with an evolution and growth which are independent of $S$ provided this is high enough, as it should be natural having the ideal case as a limit for $Stoinfty$. Our simulations confirm that the tearing instability growth rate can be as fast as $gammaapprox 0.6,{tau_A}^{-1}$, where $tau_A$ is the ideal Alfvenic time set by the macroscopic scales, for our least diffusive case with $S=10^7$. The expected instability dispersion relation and eigenmodes are also retrieved in the linear regime, for the values of $S$ explored here. Moreover, in the nonlinear stage of the simulations we observe secondary events obeying the same critical scaling with $S$, here calculated on the emph{local}, much smaller lengths, leading to increasingly faster reconnection. These findings strongly support the idea that in a fully dynamic regime, as soon as current sheets develop, thin and reach this critical threshold in their aspect ratio, the tearing mode is able to trigger plasmoid formation and reconnection on the local (ideal) Alfvenic timescales, as required to explain the explosive flaring activity often observed in solar and astrophysical plasmas.
We investigate the dynamics of a circumbinary disc that responds to the loss of mass and to the recoil velocity of the black hole produced by the merger of a binary system of supermassive black holes. We perform the first two-dimensional general rela tivistic hydrodynamics simulations of textit{extended} non-Keplerian discs and employ a new technique to construct a shock detector, thus determining the precise location of the shocks produced in the accreting disc by the recoiling black hole. In this way we can study how the properties of the system, such as the spin, mass and recoil velocity of the black hole, affect the mass accretion rate and are imprinted on the electromagnetic emission from these sources. We argue that the estimates of the bremsstrahlung luminosity computed without properly taking into account the radiation transfer yield cooling times that are unrealistically short. At the same time we show, through an approximation based on the relativistic isothermal evolution, that the luminosity produced can reach a peak value above $L simeq 10^{43} {rm erg/s} $ at about $sim 30,{rm d}$ after the merger of a binary with total mass $Msimeq 10^6 M_odot$ and persist for several days at values which are a factor of a few smaller. If confirmed by more sophisticated calculations such a signal could indeed lead to an electromagnetic counterpart of the merger of binary black-hole system.
184 - Delia Volpi 2007
We present a complete set of diagnostic tools aimed at reproducing synthetic non-thermal (synchrotron and/or Inverse Compton, IC) emissivity, integrated flux energy, polarization and spectral index simulated maps in comparison to observations. The ti me dependent relativistic magnetohydrodynamic (RMHD) equations are solved with a shock capturing code together with the evolution of the maximum particles energy. Applications to Pulsar Wind Nebulae (PWNe) are shown.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا