ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of the HIGHz Arecibo survey, which measured the HI content of 39 galaxies at redshift $z>0.16$ selected from the Sloan Digital Sky Survey. These are all actively star-forming, disk-dominated systems in relatively isolated envir onments, with stellar and HI masses larger than $10^{10}$ M$_odot$ and redshifts $0.17leq zleq 0.25$. Our sample includes not only the highest-redshift detections of HI emission from individual galaxies to date, but also some of the most HI-massive systems known. Despite being exceptionally large, the HI reservoirs of these galaxies are consistent with what is expected from their ultraviolet and optical properties. This, and the fact that the galaxies lie on the baryonic Tully-Fisher relation, suggests that HIGHz systems are rare, scaled-
For the first time, we reveal large amounts of cold molecular gas in a ram pressure stripped tail, out to a large, intracluster distance from the galaxy. With the APEX telescope we have detected 12CO(2-1) emission corresponding to more than 10^9 Msun of H_2 in three Ha bright regions along the tail of the Norma cluster galaxy ESO 137-001, out to a projected distance of 40 kpc from the disk. ESO 137-001 has an 80 kpc long and bright X-ray tail associated with a shorter (40 kpc) and broader tail of numerous star-forming H II regions. The amount of about 1.5x10^8 Msun of H_2 found in the most distant region is similar to molecular masses of tidal dwarf galaxies, though the standard Galactic CO-to-H_2 factor could overestimate the H_2 content. Along the tail, we find the amount of molecular gas to drop, while masses of the X-ray emitting and diffuse ionized components stay roughly constant. Moreover, the amounts of hot and cold gas are large and similar, and together nearly account for the missing gas from the disk. We find a very low star formation efficiency (tau > 10^10 yr) in the stripped gas in ESO 137-001 and suggest that this is due to a low average gas density in the tail, or turbulent heating of the interstellar medium that is induced by a ram pressure shock. The unprecedented bulk of observed H_2 in the ESO 137-001 tail suggests that some stripped gas may survive ram pressure stripping in the molecular phase.
We present the final data release from the GALEX Arecibo SDSS Survey (GASS), a large Arecibo program that measured the HI properties for an unbiased sample of ~800 galaxies with stellar masses greater than 10^10 Msun and redshifts 0.025<z<0.05. This release includes new Arecibo observations for 250 galaxies. We use the full GASS sample to investigate environmental effects on the cold gas content of massive galaxies at fixed stellar mass. The environment is characterized in terms of dark matter halo mass, obtained by cross-matching our sample with the SDSS group catalog of Yang et al. Our analysis provides, for the first time, clear statistical evidence that massive galaxies located in halos with masses of 10^13-10^14 Msun have at least 0.4 dex less HI than objects in lower density environments. The process responsible for the suppression of gas in group galaxies most likely drives the observed quenching of the star formation in these systems. Our findings strongly support the importance of the group environment for galaxy evolution, and have profound implications for semi-analytic models of galaxy formation, which currently do not allow for stripping of the cold interstellar medium in galaxy groups.
Using the far-infrared emission, as observed by the Herschel Virgo Cluster Survey (HeViCS), and the integrated HI and CO brightness, we infer the dust and total gas mass for a magnitude limited sample of 35 metal rich spiral galaxies in Virgo. The CO flux correlates tightly and linearly with far-infrared fluxes observed by Herschel. Molecules in these galaxies are more closely related to cold dust rather than to dust heated by star formation or to optical/NIR brightness. We show that dust mass establishes a stronger correlation with the total gas mass than with the atomic or molecular component alone. The dust-to-gas ratio increases as the HI deficiency increases, but in highly HI deficient galaxies it stays constant. Dust is in fact less affected than atomic gas by weak cluster interactions, which remove most of the HI gas from outer and high latitudes regions. Highly disturbed galaxies, in a dense cluster environment, can instead loose a considerable fraction of gas and dust from the inner regions of the disk keeping constant the dust-to-gas ratio. There is evidence that the molecular phase is also quenched. This quencing becomes evident by considering the molecular gas mass per unit stellar mass. Its amplitude, if confirmed by future studies, highlights that molecules are missing in Virgo HI deficient spirals, but to a somewhat lesser extent than dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا