ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular dynamics are extremely complex, yet understanding the slow components of their dynamics is essential to understanding their macroscopic properties. To achieve this, one models the molecular dynamics as a stochastic process and analyses the dominant eigenfunctions of the associated Fokker-Planck operator, or of closely related transfer operators. So far, the calculation of the discretized operators requires extensive molecular dynamics simulations. The Square-root approximation of the Fokker-Planck equation is a method to calculate transition rates as a ratio of the Boltzmann densities of neighboring grid cells times a flux, and can in principle be calculated without a simulation. In a previous work we still used molecular dynamics simulations to determine the flux. Here, we propose several methods to calculate the exact or approximate flux for various grid types, and thus estimate the rate matrix without a simulation. Using model potentials we test computational efficiency of the methods, and the accuracy with which they reproduce the dominant eigenfunctions and eigenvalues. For these model potentials, rate matrices with up to $mathcal{O}(10^6)$ states can be obtained within seconds on a single high-performance compute server if regular grids are used.
Markov State Models (MSM) are widely used to elucidate dynamic properties of molecular systems from unbiased Molecular Dynamics (MD). However, the implementation of reweighting schemes for MSMs to analyze biased simulations, for example produced by e nhanced sampling techniques, is still at an early stage of development. Several dynamical reweighing approaches have been proposed, which can be classified as approaches based on (i) Kramers rate theory, (ii) rescaling of the probability density flux, (iii) reweighting by formulating a likelihood function, (iv) path reweighting. We present the state-of-the-art and discuss the methodological differences of these methods, their limitations and recent applications.
For the analysis of molecular processes, the estimation of time-scales, i.e., transition rates, is very important. Estimating the transition rates between molecular conformations is -- from a mathematical point of view -- an invariant subspace projec tion problem. A certain infinitesimal generator acting on function space is projected to a low-dimensional rate matrix. This projection can be performed in two steps. First, the infinitesimal generator is discretized, then the invariant subspace is approxi-mated and used for the subspace projection. In our approach, the discretization will be based on a Voronoi tessellation of the conformational space. We will show that the discretized infinitesimal generator can simply be approximated by the geometric average of the Boltzmann weights of the Voronoi cells. Thus, there is a direct correla-tion between the potential energy surface of molecular structures and the transition rates of conformational changes. We present results for a 2d-diffusion process and Alanine dipeptide.
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules.We present a method to obtain path ensemble averages of a perturbed dynamics fro m a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSM) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended toreweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor on the fly during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process to an artificial many-body system and alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا