ترغب بنشر مسار تعليمي؟ اضغط هنا

127 - Lu Xu 2021
We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional lattice. The particles can be created/annihilated at the boundaries with time-dependent rate. These boundary dynamics are properly accelerated. We prove the hydrodynami c limit of the particle density profile, under the hyperbolic space-time rescaling, evolves with the entropy solution to Burgers equation with Dirichlet boundary conditions. The boundary conditions are characterised by boundary entropy flux pair.
We present ARCH++, an image-based method to reconstruct 3D avatars with arbitrary clothing styles. Our reconstructed avatars are animation-ready and highly realistic, in both the visible regions from input views and the unseen regions. While prior wo rk shows great promise of reconstructing animatable clothed humans with various topologies, we observe that there exist fundamental limitations resulting in sub-optimal reconstruction quality. In this paper, we revisit the major steps of image-based avatar reconstruction and address the limitations with ARCH++. First, we introduce an end-to-end point based geometry encoder to better describe the semantics of the underlying 3D human body, in replacement of previous hand-crafted features. Second, in order to address the occupancy ambiguity caused by topological changes of clothed humans in the canonical pose, we propose a co-supervising framework with cross-space consistency to jointly estimate the occupancy in both the posed and canonical spaces. Last, we use image-to-image translation networks to further refine detailed geometry and texture on the reconstructed surface, which improves the fidelity and consistency across arbitrary viewpoints. In the experiments, we demonstrate improvements over the state of the art on both public benchmarks and user studies in reconstruction quality and realism.
350 - Lu Xu , Yew Ken Chia , Lidong Bing 2021
Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end mann er but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.
Ultrasound scanning is essential in several medical diagnostic and therapeutic applications. It is used to visualize and analyze anatomical features and structures that influence treatment plans. However, it is both labor intensive, and its effective ness is operator dependent. Real-time accurate and robust automatic detection and tracking of anatomical structures while scanning would significantly impact diagnostic and therapeutic procedures to be consistent and efficient. In this paper, we propose a deep learning framework to automatically detect and track a specific anatomical target structure in ultrasound scans. Our framework is designed to be accurate and robust across subjects and imaging devices, to operate in real-time, and to not require a large training set. It maintains a localization precision and recall higher than 90% when trained on training sets that are as small as 20% in size of the original training set. The framework backbone is a weakly trained segmentation neural network based on U-Net. We tested the framework on two different ultrasound datasets with the aim to detect and track the Vagus nerve, where it outperformed current state-of-the-art real-time object detection networks.
Network function virtualization (NFV) is a crucial technology for the 5G network development because it can improve the flexibility of employing hardware and reduce the construction of base stations. There are vast service chains in NFV to meet users requests, which are composed of a sequence of network functions. These virtual network functions (VNFs) are implemented in virtual machines by software and virtual environment. How to deploy VMs to process VNFs of the service chains as soon as possible when users requests are received is very challenging to solve by traditional algorithms on a large scale. Compared with traditional algorithms, quantum computing has better computational performance because of quantum parallelism. We build an integer linear programming model of the VNF scheduling problem with the objective of minimizing delays and transfer it into the quadratic unconstrained binary optimization (QUBO) model. Our proposed heuristic algorithm employs a quantum annealer to solve the model. Finally, we evaluate the computational results and explore the feasibility of leveraging quantum computing to solve the VNFs scheduling problem.
83 - Lu Xu , Yuwei Zhang , Ying Liu 2021
Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-le vel losses, which treat all regions of the CT image equally and can be inefficient when fine-grained structures coexist with non-uniformly distributed noises. To address this issue, we propose a Structure-preserving Kernel Prediction Network (StructKPN) that combines the kernel prediction network with a structure-aware loss function that utilizes the pixel gradient statistics and guides the model towards spatially-variant filters that enhance noise removal, prevent over-smoothing and preserve detailed structures for different regions in CT imaging. Extensive experiments demonstrated that our approach achieved superior performance on both synthetic and non-synthetic datasets, and better preserves structures that are highly desired in clinical screening and low-dose protocol optimization.
Text recognition is a popular topic for its broad applications. In this work, we excavate the implicit task, character counting within the traditional text recognition, without additional labor annotation cost. The implicit task plays as an auxiliary branch for complementing the sequential recognition. We design a two-branch reciprocal feature learning framework in order to adequately utilize the features from both the tasks. Through exploiting the complementary effect between explicit and implicit tasks, the feature is reliably enhanced. Extensive experiments on 7 benchmarks show the advantages of the proposed methods in both text recognition and the new-built character counting tasks. In addition, it is convenient yet effective to equip with variable networks and tasks. We offer abundant ablation studies, generalizing experiments with deeper understanding on the tasks. Code is available.
Graph Neural Networks (GNNs) have been studied through the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dy namics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Recently, data-driven single-view reconstruction methods have shown great progress in modeling 3D dressed humans. However, such methods suffer heavily from depth ambiguities and occlusions inherent to single view inputs. In this paper, we address suc h issues by lifting the single-view input with additional views and investigate the best strategy to suitably exploit information from multiple views. We propose an end-to-end approach that learns an implicit 3D representation of dressed humans from sparse camera views. Specifically, we introduce two key components: first an attention-based fusion layer that learns to aggregate visual information from several viewpoints; second a mechanism that encodes local 3D patterns under the multi-view context. In the experiments, we show the proposed approach outperforms the state of the art on standard data both quantitatively and qualitatively. Additionally, we apply our method on real data acquired with a multi-camera platform and demonstrate our approach can obtain results comparable to multi-view stereo with dramatically less views.
102 - Lu Xu , Zhanming Jie , Wei Lu 2021
It has been shown that named entity recognition (NER) could benefit from incorporating the long-distance structured information captured by dependency trees. We believe this is because both types of features - the contextual information captured by t he linear sequences and the structured information captured by the dependency trees may complement each other. However, existing approaches largely focused on stacking the LSTM and graph neural networks such as graph convolutional networks (GCNs) for building improved NER models, where the exact interaction mechanism between the two types of features is not very clear, and the performance gain does not appear to be significant. In this work, we propose a simple and robust solution to incorporate both types of features with our Synergized-LSTM (Syn-LSTM), which clearly captures how the two types of features interact. We conduct extensive experiments on several standard datasets across four languages. The results demonstrate that the proposed model achieves better performance than previous approaches while requiring fewer parameters. Our further analysis demonstrates that our model can capture longer dependencies compared with strong baselines.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا