ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper is aiming to review some of the neutron scattering studies performed on URu2Si2 in Grenoble. This compound has been studied for a quarter of century because of a so-called hidden order ground state visible by most of the bulk experiments b ut almost invisible by microscopic probes like neutrons, muons NMR or x-ray. We stress on some aspects that were not addressed previously. Firstly, the comparison of the cell parameters in the 1-2-2 systems seems to point that the magnetic properties of URu2Si2 are leading by an U4+ electronic state. Secondly, a compilation of the different studies of the tiny antiferromagnetic moment indicates that the tiny antiferromagnetic moment has a constant value which may indicate that it is not necessary extrinsic. We also present the last development on the magnetic form factor measurement in which the magnetic density rotates when entering in the hidden order state. To end, the thermal dependence of the two most intense magnetic excitation at Q0=(1,0,0) and Q1=(0.6,0,0) seems to indicate two different origins or processes for these excitations.
We use unpolarized and polarized inelastic neutron scattering to study low-energy spin excitations in NaFeAs, which exhibits a tetragonal-to-orthorhombic lattice distortion at $T_sapprox 58$ K followed by a collinear antiferromagnetic (AF) order belo w $T_Napprox 45$ K. In the AF ordered state ($T<T_N$), spin waves are entirely c-axis polarized below $sim$10 meV, exhibiting a gap of $sim4$ meV at the AF zone center and disperse to $sim$7 meV near the c-axis AF zone boundary. On warming to the paramagnetic state with orthorhombic lattice distortion ($T_N<T<T_s$), spin excitations become anisotropic within the FeAs plane. Upon further warming to the paramagnetic tetragonal state ($T>T_s$), spin excitations become more isotropic. Since similar magnetic anisotropy is also observed in the paramagnetic tetragonal phase of superconducting BaFe$_{1.904}$Ni$_{0.096}$As$_2$, our results suggest that the spin excitation anisotropy in superconducting iron pnictides originates from similar anisotropy already present in their parent compounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا