ترغب بنشر مسار تعليمي؟ اضغط هنا

148 - Joseph A. Yasi 2011
We develop a first-principles model of thermally-activated cross-slip in magnesium in the presence of a random solute distribution. Electronic structure methods provide data for the interaction of solutes with prismatic dislocation cores and basal di slocation cores. Direct calculations of interaction energies are possible for solutes---K, Na, and Sc---that lower the Mg prismatic stacking fault energy to improve formability. To connect to thermally activated cross-slip, we build a statistical model for the distribution of activation energies for double kink nucleation, barriers for kink migration, and roughness of the energy landscape to be overcome by an athermal stress. These distributions are calculated numerically for a range of concentrations, as well as alternate approximate analytic expressions for the dilute limit. The analytic distributions provide a simplified model for the maximum cross-slip softening for a solute as a function of temperature. The direct interaction calculations predict lowered forming temperatures for Mg-0.7at.%Sc, Mg-0.4at.%K, and Mg-0.6at.%Na of approximately 250C.
91 - Joseph A. Yasi 2010
Solid-solution strengthening results from solutes impeding the glide of dislocations. Existing theories of strength rely on solute-dislocation interactions, but do not consider dislocation core structures, which need an accurate treatment of chemical bonding. Here, we focus on strengthening of Mg, the lightest of all structural metals and a promising replacement for heavier steel and aluminum alloys. Elasticity theory, which is commonly used to predict the requisite solute-dislocation interaction energetics, is replaced with quantum-mechanical first-principles calculations to construct a predictive mesoscale model for solute strengthening of Mg. Results for 29 different solutes are displayed in a strengthening design map as a function of solute misfits that quantify volumetric strain and slip effects. Our strengthening model is validated with available experimental data for several solutes, including Al and Zn, the two most common solutes in Mg. These new results highlight the ability of quantum-mechanical first-principles calculations to predict complex material properties such as strength.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا