ترغب بنشر مسار تعليمي؟ اضغط هنا

We review the status of calculations of Yang-Mills Green functions from Dyson-Schwinger equations. The role of truncations is discussed and results for the four-gluon vertex are presented.
We consider a chiral baryon-meson model for nucleons and their parity partners in mirror assignment interacting with pions, sigma and omega mesons to describe the liquid-gas transition of nuclear matter together with chiral symmetry restoration in th e high density phase. Within the mean-field approximation the model is known to provide a phenomenologically successful description of the nuclear-matter transition. Here, we go beyond this approximation and include mesonic fluctuations by means of the functional renormalization group. While these fluctuations do not lead to major qualitative changes in the phase diagram of the model, beyond mean-field, one is no-longer free to adjust the parameters so as to reproduce the binding energy per nucleon, the nuclear saturation density, and the nucleon sigma term all at the same time. However, the prediction of a clear first-order chiral transition at low temperatures inside the high baryon-density phase appears to be robust.
We report on the status of ongoing Hybrid-Monte-Carlo simulations of the tight-binding model of mono-layer graphene. We present results concerning the semimetal-insulator phase transition, whereby two-body interactions are modeled by a partially scre ened Coulomb potential which takes into account screening by electrons in the lower $sigma$-orbitals. We obtain evidence that finite-size effects may still be present in the current estimate of the critical coupling strength $alpha_C$, which was previously extracted from simulations on lattice-sizes up to $N_x=N_y=18$. We also present preliminary results concerning the Neck-disrupting Lifshitz transition which occurs at finite Fermion-density in the limit of vanishing two-body interactions. A sign-problem is circumvented by using a spin-dependent chemical potential in our simulations.
We report on Hybrid-Monte-Carlo simulations of the tight-binding model with long-range Coulomb interactions for the electronic properties of graphene. We investigate the spontaneous breaking of sublattice symmetry corresponding to a transition from t he semimetal to an antiferromagnetic insulating phase. Our short-range interactions thereby include the partial screening due to electrons in higher energy states from ab initio calculations based on the constrained random phase approximation [T.O.Wehling {it et al.}, Phys.Rev.Lett.{bf 106}, 236805 (2011)]. In contrast to a similar previous Monte-Carlo study [M.V.Ulybyshev {it et al.}, Phys.Rev.Lett.{bf 111}, 056801 (2013)] we also include a phenomenological model which describes the transition to the unscreened bare Coulomb interactions of graphene at half filling in the long-wavelength limit. Our results show, however, that the critical coupling for the antiferromagnetic Mott transition is largely insensitive to the strength of these long-range Coulomb tails. They hence confirm the prediction that suspended graphene remains in the semimetal phase when a realistic static screening of the Coulomb interactions is included.
In quantum chromodynamics with static quarks the confinement-deconfinement phase transition is connected to the spontaneous breaking of the global Z3 center symmetry. This symmetry is lost when one considers dynamical quarks. Owing to the fractional electric charge of quarks, we recover a global Z6 center symmetry when QCD is regarded as a part of the Standard Model. We present results from QCD-like theories extended by electromagnetic interactions and show that the weak coupling limit of the QED part of the model results in a center-like symmetry with disorder in the vacuum. This can be seen explicitly in a character expansion of the fermion determinant. Further, we show that corresponding center averages project the fermion determinant on N-ality zero and discuss whether the additional center symmetry can be used to eliminate the fermion sign problem in QCD with fundamental quarks.
In this work, results are presented of Hybrid-Monte-Carlo simulations of the tight-binding Hamiltonian of graphene, coupled to an instantaneous long-range two-body potential which is modeled by a Hubbard-Stratonovich auxiliary field. We present an in vestigation of the spontaneous breaking of the sublattice symmetry, which corresponds to a phase transition from a conducting to an insulating phase and which occurs when the effective fine-structure constant $alpha$ of the system crosses above a certain threshold $alpha_C$. Qualitative comparisons to earlier works on the subject (which used larger system sizes and higher statistics) are made and it is established that $alpha_C$ is of a plausible magnitude in our simulations. Also, we discuss differences between simulations using compact and non-compact variants of the Hubbard field and present a quantitative comparison of distinct discretization schemes of the Euclidean time-like dimension in the Fermion operator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا