ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-short pulses propagating in nonlinear nanophotonic waveguides can simultaneously leverage both temporal and spatial field confinement, promising a route towards single-photon nonlinearities in an all-photonic platform. In this multimode quantum regime, however, faithful numerical simulations of pulse dynamics naively require a representation of the state in an exponentially large Hilbert space. Here, we employ a time-domain, matrix product state (MPS) representation to enable efficient simulations by exploiting the entanglement structure of the system. In order to extract physical insight from these simulations, we develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes, enabling, e.g., access to the phase-space portraits of arbitrary pulse waveforms. As a demonstration, we perform exact numerical simulations of a Kerr soliton in the quantum regime. We observe the development of non-classical Wigner-function negativity in the solitonic mode as well as quantum corrections to the semiclassical dynamics of the pulse. A similar analysis of $chi^{(2)}$ simultons reveals a unique entanglement structure between the fundamental and second harmonic. Our approach is also readily compatible with quantum trajectory theory, allowing full quantum treatment of propagation loss and decoherence. We expect this work to establish the MPS technique as part of a unified engineering framework for the emerging field of broadband quantum photonics.
Mode-locking is a process in which different modes of an optical resonator establish, through nonlinear interactions, stable synchronization. This self-organization underlies light sources that enable many modern scientific applications, such as ultr afast and high-field optics and frequency combs. Despite this, mode-locking has almost exclusively referred to self-organization of light in a single dimension - time. Here we present a theoretical approach, attractor dissection, for understanding three-dimensional (3D) spatiotemporal mode-locking (STML). The key idea is to find, for each distinct type of 3D pulse, a specific, minimal reduced model, and thus to identify the important intracavity effects responsible for its formation and stability. An intuition for the results follows from the minimum loss principle, the idea that a laser strives to find the configuration of intracavity light that minimizes loss (maximizes gain extraction). Through this approach, we identify and explain several distinct forms of STML. These novel phases of coherent laser light have no analogues in 1D and are supported by experimental measurements of the three-dimensional field, revealing STML states comprising more than $10^7$ cavity modes. Our results should facilitate the discovery and understanding of new higher-dimensional forms of coherent light which, in turn, may enable new applications.
Building on the scientific understanding and technological infrastructure of single-mode fibers, multimode fibers are being explored as a means of adding new degrees of freedom to optical technologies such as telecommunications, fiber lasers, imaging , and measurement. Here, starting from a baseline of single-mode nonlinear fiber optics, we introduce the growing topic of multimode nonlinear fiber optics. We demonstrate a new numerical solution method for the system of equations that describes nonlinear multimode propagation, the generalized multimode nonlinear Schrodinger equation. This numerical solver is freely available, and includes a number of multimode fiber analysis tools. It features a significant parallel computing speed-up on modern graphical processing units, translating to orders-of-magnitude speed-up over the split-step Fourier method. We demonstrate its use with several examples in graded- and step-index multimode fibers. Finally, we discuss several key open directions and questions, whose answers could have significant scientific and technological impact.
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e xample, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of many longitudinal and transverse modes in a laser has received little attention. The multitude of disparate frequency spacings, strong dispersions, and complex nonlinear interactions among modes greatly favor decoherence over the emergence of order. Here we report the locking of multiple transverse and longitudinal modes in fiber lasers to generate ultrafast spatiotemporal pulses. We construct multimode fiber cavities using graded-index multimode fiber (GRIN MMF). This causes spatial and longitudinal mode dispersions to be comparable. These dispersions are counteracted by strong intracavity spatial and spectral filtering. Under these conditions, we achieve spatiotemporal, or multimode (MM), mode-locking. A variety of other multimode nonlinear dynamical processes can also be observed. Multimode fiber lasers thus open new directions in studies of three-dimensional nonlinear wave propagation. Lasers that generate controllable spatiotemporal fields, with orders-of-magnitude increases in peak power over existing designs, should be possible. These should increase laser utility in many established applications and facilitate new ones.
113 - Walter Fu , Logan G. Wright , 2017
We demonstrate a fiber system which amplifies and compresses pulses from a gain-switched diode. A Mamyshev regenerator shortens the pulses and improves their coherence, enabling subsequent amplification by parabolic pre-shaping. As a result, we are a ble to control nonlinear effects and generate nearly transform-limited, 140-fs pulses with 13-MW peak power---an order-of-magnitude improvement over previous gain-switched diode sources. Seeding with a gain-switched diode results in random fluctuations of 2% in the pulse energy, which future work using known techniques may ameliorate. Further development may allow such systems to compete directly with sources based on modelocked oscillators in some applications while enjoying unparalleled robustness and repetition rate control.
We demonstrate a fiber source with the best performance from an ultrafast fiber oscillator to date. The ring-cavity Mamyshev oscillator produces 50-nJ and 40-fs pulses. The peak power is an order of magnitude higher than that of previous lasers with similar fiber mode area. This performance is achieved by designing the oscillator to support parabolic pulse formation which enables the management of unprecedented nonlinear phase shifts. Experimental results are limited by available pump power. Numerical simulations reveal key aspects of the pulse evolution, and realistically suggest that (after external compression) peak powers that approach 10 MW are possible from ordinary single-mode fiber. The combination of practical features such as environmental stability, established previously, with the performance described here make the Mamyshev oscillator extremely attractive for applications.
We experimentally isolate and directly observe multimode solitons in few-mode graded-index fiber. By varying the input energy and modal composition of the launched pulse, we observe a continuous variation of multimode solitons with different spatiote mporal properties. They exhibit an energy-volume relation that is distinct from those of single-mode and fully spatiotemporal solitons.
Multimode fibres (MMFs) are attracting interest for complex spatiotemporal dynamics, and for ultrafast fibre sources, imaging and telecommunications. This new interest is based on three key properties: their high spatiotemporal complexity (informatio n capacity), the important role of disorder, and complex intermodal interactions. To date, phenomena in MMFs have been studied only in limiting cases where one or more of these properties can be neglected. Here we study MMFs in a regime in which all these elements are integral. We observe a spatial beam-cleaning process preceding spatiotemporal modulation instability. We show that the origin of these processes is a universal unstable attractor in graded-index MMFs. Both the self-organization of the attractor, as well as its instability, are caused by intermodal interactions characterized by cooperating disorder, nonlinearity and dissipation. The demonstration of a disorder-enhanced nonlinear process in MMF has important implications for telecommunications, and the multifaceted complexity of the dynamics showcases MM waveguides as ideal laboratories for many topics and applications in complexity science.
Despite the abundance and importance of three-dimensional systems, relatively little progress has been made on spatiotemporal nonlinear optical waves compared to time-only or space-only systems. Here we study radiation emitted by three-dimensionally evolving nonlinear optical waves in multimode fiber. Spatiotemporal oscillations of solitons in the fiber generate multimode dispersive wave sidebands over an ultrabroadband spectral range. This work suggests routes to multipurpose sources of coherent electromagnetic waves, with unprecedented wavelength coverage.
Modern integrated circuits are essentially two-dimensional (2D). Partial three-dimensional (3D) integration and 3D-transistor-level integrated circuits have long been anticipated as routes to improve the performance, cost and size of electronic compu ting systems. Even as electronics approach fundamental limits however, stubborn challenges in 3D circuits, and innovations in planar technology have delayed the dimensional transition. Optical computing offers potential for new computing approaches, substantially greater performance and would complement technologies in optical interconnects and data storage. Nevertheless, despite some progress, few proposed optical transistors possess essential features required for integration into real computing systems. Here we demonstrate a logic gate based on universal features of nonlinear wave propagation: spatiotemporal instability and collapse. It meets the scaling criteria and enables a 3D, reconfigurable, globally-hyperconnected architecture that may achieve an exponential speed up over conventional platforms. It provides an attractive building block for future optical computers, where its universality should facilitate flexible implementations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا