ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a spectral decomposition technique that separates the contribution of different kinematic components in galaxies from the observed spectrum. This allows to study the kinematics and properties of the stellar populations of the individual co mponents (e.g., bulge, disk, counter-rotating cores, orthogonal structures). Here, we discuss the results of this technique for galaxies that host counter-rotating stellar disks of comparable size. In all the studied cases, the counter-rotating stellar disk is the less massive, the youngest and has different chemical content (metallicity and alpha-elements abundance ratio) than the main galaxy disk. Further applications of the spectral decomposition technique are also discussed.
Images taken with modern detectors require calibration via flat fielding to obtain the same flux scale across the whole image. One method for obtaining the best possible flat fielding accuracy is to derive a photometric model from dithered stellar ob servations. A large variety of effects have been taken into account in such modelling. Recently, Moehler et al. (2010) discovered systematic variations in available flat frames for the European Southern Observatorys FORS instrument that change with the orientation of the projected image on the sky. The effect on photometry is large compared to other systematic effects that have already been taken into account. In this paper, we present a correction method for this effect: a generalization of the fitting procedure of Bramich & Freudling (2012) to include a polynomial representation of rotating flat fields. We then applied the method to the specific case of FORS2 photometric observations of a series of standard star fields, and provide parametrised solutions that can be applied by the users. We found polynomial coefficients to describe the static and rotating large-scale systematic flat-field variations across the FORS2 field of view. Applying these coefficients to FORS2 data, the systematic changes in the flux scale across FORS2 images can be improved by ~1% to ~2% of the total flux. This represents a significant improvement in the era of large-scale surveys, which require homogeneous photometry at the 1% level or better.
We present the results of the VLT/VIMOS integral-field spectroscopic observations of the inner 28x28 (3.1 kpc x 3.1 kpc) of the interacting spiral NGC 5719, which is known to host two co-spatial counter-rotating stellar discs. At each position in the field of view, the observed galaxy spectrum is decomposed into the contributions of the spectra of two stellar and one ionised-gas components. We measure the kinematics and the line strengths of the Lick indices of the two stellar counter-rotating components. We model the data of each stellar component with single stellar population models that account for the alpha/Fe overabundance. We also derive the distribution and kinematics of the ionised-gas disc, that is associated with the younger, less rich in metals, more alpha-enhanced, and less luminous stellar component. They are both counter-rotating with respect the main stellar body of the galaxy. These findings prove the scenario where gas was accreted first by NGC 5719 onto a retrograde orbit from the large reservoir available in its neighbourhoods as the result of the interaction with its companion NGC 5713, and subsequently fuelled the in situ formation of the counter-rotating stellar disc.
We study the stellar population far into the halo of one of the two brightest galaxies in the Coma cluster, NGC 4889, based on deep medium resolution spectroscopy with FOCAS at the Subaru 8.2m telescope. We fit single stellar population models to the measured line-strength (Lick) indices (Hbeta, Mgb, [MgFe] and <Fe>). Combining with literature data, we construct radial profiles of metallicity, [alpha/Fe] element abundance ratio and age for NGC 4889, from the center out to ~60 kpc (~4Re). We find evidence for different chemical and star formation histories for stars inside and outside 1.2Re = 18 kpc radius. The inner regions are characterized by a steep [Z/H] gradient and high [alpha/Fe] at ~2.5 times solar value. In the halo, between 18 and 60 kpc, the [Z/H] is near-solar with a shallow gradient, while [alpha/Fe] shows a strong negative gradient, reaching solar values at ~60 kpc. We interpret these data in terms of different formation histories for both components. The data for the inner galaxy are consistent with a rapid, quasi-monolithic, dissipative merger origin at early redshifts, followed by one or at most a few dry mergers. Those for the halo argue for later accretion of stars from old systems with more extended star formation histories. The half-light radius of the inner component alone is estimated as ~6 kpc, suggesting a significantly smaller size of this galaxy in the past. This may be the local stellar population signature of the size evolution found for early-type galaxies from high-redshift observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا