ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, significant progress has been made in single-view depth estimation thanks to increasingly large and diverse depth datasets. However, these datasets are largely limited to specific application domains (e.g. indoor, autonomous driving) or sta tic in-the-wild scenes due to hardware constraints or technical limitations of 3D reconstruction. In this paper, we introduce the first depth dataset DynOcc consisting of dynamic in-the-wild scenes. Our approach leverages the occlusion cues in these dynamic scenes to infer depth relationships between points of selected video frames. To achieve accurate occlusion detection and depth order estimation, we employ a novel occlusion boundary detection, filtering and thinning scheme followed by a robust foreground/background classification method. In total our DynOcc dataset contains 22M depth pairs out of 91K frames from a diverse set of videos. Using our dataset we achieved state-of-the-art results measured in weighted human disagreement rate (WHDR). We also show that the inferred depth maps trained with DynOcc can preserve sharper depth boundaries.
Existing video-based human pose estimation methods extensively apply large networks onto every frame in the video to localize body joints, which suffer high computational cost and hardly meet the low-latency requirement in realistic applications. To address this issue, we propose a novel Dynamic Kernel Distillation (DKD) model to facilitate small networks for estimating human poses in videos, thus significantly lifting the efficiency. In particular, DKD introduces a light-weight distillator to online distill pose kernels via leveraging temporal cues from the previous frame in a one-shot feed-forward manner. Then, DKD simplifies body joint localization into a matching procedure between the pose kernels and the current frame, which can be efficiently computed via simple convolution. In this way, DKD fast transfers pose knowledge from one frame to provide compact guidance for body joint localization in the following frame, which enables utilization of small networks in video-based pose estimation. To facilitate the training process, DKD exploits a temporally adversarial training strategy that introduces a temporal discriminator to help generate temporally coherent pose kernels and pose estimation results within a long range. Experiments on Penn Action and Sub-JHMDB benchmarks demonstrate outperforming efficiency of DKD, specifically, 10x flops reduction and 2x speedup over previous best model, and its state-of-the-art accuracy.
Some tasks, such as surface normals or single-view depth estimation, require per-pixel ground truth that is difficult to obtain on real images but easy to obtain on synthetic. However, models learned on synthetic images often do not generalize well t o real images due to the domain shift. Our key idea to improve domain adaptation is to introduce a separate anchor task (such as facial landmarks) whose annotations can be obtained at no cost or are already available on both synthetic and real datasets. To further leverage the implicit relationship between the anchor and main tasks, we apply our freeze technique that learns the cross-task guidance on the source domain with the final network layers, and use it on the target domain. We evaluate our methods on surface normal estimation on two pairs of datasets (indoor scenes and faces) with two kinds of anchor tasks (semantic segmentation and facial landmarks). We show that blindly applying domain adaptation or training the auxiliary task on only one domain may hurt performance, while using anchor tasks on both domains is better behaved. Our freeze technique outperforms competing approaches, reaching performance in facial images on par with a recently popular surface normal estimation method using shape from shading domain knowledge.
Estimating the relative rigid pose between two RGB-D scans of the same underlying environment is a fundamental problem in computer vision, robotics, and computer graphics. Most existing approaches allow only limited maximum relative pose changes sinc e they require considerable overlap between the input scans. We introduce a novel deep neural network that extends the scope to extreme relative poses, with little or even no overlap between the input scans. The key idea is to infer more complete scene information about the underlying environment and match on the completed scans. In particular, instead of only performing scene completion from each individual scan, our approach alternates between relative pose estimation and scene completion. This allows us to perform scene completion by utilizing information from both input scans at late iterations, resulting in better results for both scene completion and relative pose estimation. Experimental results on benchmark datasets show that our approach leads to considerable improvements over state-of-the-art approaches for relative pose estimation. In particular, our approach provides encouraging relative pose estimates even between non-overlapping scans.
Semantic keypoints provide concise abstractions for a variety of visual understanding tasks. Existing methods define semantic keypoints separately for each category with a fixed number of semantic labels in fixed indices. As a result, this keypoint r epresentation is in-feasible when objects have a varying number of parts, e.g. chairs with varying number of legs. We propose a category-agnostic keypoint representation, which combines a multi-peak heatmap (StarMap) for all the keypoints and their corresponding features as 3D locations in the canonical viewpoint (CanViewFeature) defined for each instance. Our intuition is that the 3D locations of the keypoints in canonical object views contain rich semantic and compositional information. Using our flexible representation, we demonstrate competitive performance in keypoint detection and localization compared to category-specific state-of-the-art methods. Moreover, we show that when augmented with an additional depth channel (DepthMap) to lift the 2D keypoints to 3D, our representation can achieve state-of-the-art results in viewpoint estimation. Finally, we show that our category-agnostic keypoint representation can be generalized to novel categories.
Finding visual correspondence between local features is key to many computer vision problems. While defining features with larger contextual scales usually implies greater discriminativeness, it could also lead to less spatial accuracy of the feature s. We propose AutoScaler, a scale-attention network to explicitly optimize this trade-off in visual correspondence tasks. Our network consists of a weight-sharing feature network to compute multi-scale feature maps and an attention network to combine them optimally in the scale space. This allows our network to have adaptive receptive field sizes over different scales of the input. The entire network is trained end-to-end in a siamese framework for visual correspondence tasks. Our method achieves favorable results compared to state-of-the-art methods on challenging optical flow and semantic matching benchmarks, including Sintel, KITTI and CUB-2011. We also show that our method can generalize to improve hand-crafted descriptors (e.g Daisy) on general visual correspondence tasks. Finally, our attention network can generate visually interpretable scale attention maps.
Sculptors often deviate from geometric accuracy in order to enhance the appearance of their sculpture. These subtle stylizations may emphasize anatomy, draw the viewers focus to characteristic features of the subject, or symbolize textures that might not be accurately reproduced in a particular sculptural medium, while still retaining fidelity to the unique proportions of an individual. In this work we demonstrate an interactive system for enhancing face geometry using a class of stylizations based on visual decomposition into abstract semantic regions, which we call sculptural abstraction. We propose an interactive two-scale optimization framework for stylization based on sculptural abstraction, allowing real-time adjustment of both global and local parameters. We demonstrate this systems effectiveness in enhancing physical 3D prints of scans from various sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا