ترغب بنشر مسار تعليمي؟ اضغط هنا

The main goal of the EXOZODI survey is to detect and characterize circumstellar dust and to propose the first statistical study of exozodiacal disks in the near-infrared using telescopes in both hemispheres. For this purpose, Ertel et al. have conduc ted in 2012 a survey of nearby main sequence stars with VLTI/PIONIER to search for the presence of circumstellar dust. This survey, carried out during 12 nights, comprises about 100 stars. For each star, we obtained typically three OBs and we searched for circumstellar emission based on the measurement of squared visibilities at short baselines. A drop in the measured visibilities with respect to the expected photospheric visibility indicates the presence of resolved emission around the target star. It is however generally not possible to conclude on the morphology of the detected emission based solely on the squared visibilities. Here, we focus on closure phases to search for faint companions around the whole sample. Indeed, to derive robust statistics on the occurrence rate of bright exozodiacal disks, we need to discriminate between companions and disks. For this reason, the main goal of this paper is to discriminate between circumstellar disks (which show no closure phase provided that they are point-symmetric) and faint companions (point-like sources, creating non-zero closure phases). We also aim to reveal new companions that do not necessarily produce a significant signature in the squared visibilities, as the signature of the companion may show up more prominently in the closure phases. In this process, we reveal four new stellar companions with contrasts ranging from 2% to 95% (i.e., up to equal flux binaries). We also tentatively detect faint companions around one other target that will require follow-up observations to be confirmed or infirmed. We discuss the implications of these discoveries on the results of the exozodi survey.
The Exozodi survey aims to determine the occurrence rate of bright exozodiacal discs around nearby main sequence stars using infrared interferometry. Although the Exozodi survey targets have been carefully selected to avoid the presence of binary sta rs, the results of this survey can still be biased by the presence of unidentified stellar companions. Using the PIONIER data set collected within the Exozodi survey, we aim to search for the signature of point-like companions around the Exozodi target stars. We use both the closure phases and squared visibilities collected by PIONIER to search for companions within the ~100 mas interferometric field of view. The presence of a companion is assessed by computing the goodness of fit to the data for a series of binary models with various separations and contrasts. Five stellar companions are resolved for the first time around five A-type stars: HD 4150, HD 16555, HD 29388, HD 202730, and HD 224392 (although the companion to HD 16555 was independently resolved by speckle interferometry while we were carrying out the survey). In the most likely case of main sequence companions, their spectral types range from A5V to K4V. Three of these stars were already suspected to be binaries from Hipparcos astrometric measurements, although no information was available on the companions themselves so far. In addition to debiasing the statistics of the Exozodi survey, these results can also be used to revise the fraction of visual binaries among A-type stars, suggesting that an extra ~13% A-type stars are visual binaries in addition to the ones detected in previous direct imaging surveys. We estimate that about half the population of nearby A-type stars could be resolved as visual binaries using a combination of state-of-the-art interferometry and single-aperture imaging, and we suggest that a significant fraction of these binaries remains undetected to date.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا