ترغب بنشر مسار تعليمي؟ اضغط هنا

Given two symmetric and positive semidefinite square matrices $A, B$, is it true that any matrix given as the product of $m$ copies of $A$ and $n$ copies of $B$ in a particular sequence must be dominated in the spectral norm by the ordered matrix pro duct $A^m B^n$? For example, is $$ | AABAABABB | leq | AAAAABBBB | ? $$ Drury has characterized precisely which disordered words have the property that an inequality of this type holds for all matrices $A,B$. However, the $1$-parameter family of counterexamples Drury constructs for these characterizations is comprised of $3 times 3$ matrices, and thus as stated the characterization applies only for $N times N$ matrices with $N geq 3$. In contrast, we prove that for $2 times 2$ matrices, the general rearrangement inequality holds for all disordered words. We also show that for larger $N times N$ matrices, the general rearrangement inequality holds for all disordered words, for most $A,B$ (in a sense of full measure) that are sufficiently small perturbations of the identity.
Given two intervals $I, J subset mathbb{R}$, we ask whether it is possible to reconstruct a real-valued function $f in L^2(I)$ from knowing its Hilbert transform $Hf$ on $J$. When neither interval is fully contained in the other, this problem has a u nique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting $f$ to functions with controlled total variation, reconstruction becomes stable. In particular, for functions $f in H^1(I)$, we show that $$ |Hf|_{L^2(J)} geq c_1 exp{left(-c_2 frac{|f_x|_{L^2(I)}}{|f|_{L^2(I)}}right)} | f |_{L^2(I)} ,$$ for some constants $c_1, c_2 > 0$ depending only on $I, J$. This inequality is sharp, but we conjecture that $|f_x|_{L^2(I)}$ can be replaced by $|f_x|_{L^1(I)}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا