ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse colours of the nuclear regions of intermediate redshift disk galaxies, with the aim of obtaining empirical information of relative ages of bulges and disks at 0.1 < z < 1.3. We work with an apparent-diameter limited parent sample of 248 ga laxies from the HST Groth Strip Survey. We apply a conservative criterion to identify bulges and potential precursors of present-day bulges based on nuclear surface brightness excess above the exponential profile of the outer parts. We measure bulge colours on wedge profiles opening on the semi-minor axis, and compare them to disk, and global galaxy colours. For 60% of galaxies with bulges, the rest-frame nuclear colour distribution shows a red sequence that is well fit by passive evolution models of various ages, while the remainder 40% scatters towards bluer colours. In contrast, galaxies without central brightness excess show typical colours of star forming population and lack a red sequence. We also see that, as in the local Universe, most of the minor axis colour profiles are negative (bluer outward), and fairly gentle, indicating that nuclear colours are not distinctly different from disk colours. This is corroborated when comparing nuclear, global and disk colours: these show strong correlations, for any value of the central brightness prominence of the bulge. Comparison with synthetic models of red sequence bulge colours suggests that such red bulges have stopped forming stars at an epoch earlier than ~ 1 Gyr before the observation. The correlation between nuclear and disk colours and the small colour gradients hints at an intertwined star formation history for bulges and disks: probably, most of our red bulges formed in a process in which truncation of star formation in the bulge did not destroy the disk.
We study the color structure of disk galaxies in the Groth strip at redshifts 0.1<z<1.2. Our aim is to test formation models in which bulges form before/after the disk. We find smooth color distributions with gentle outward blueing across the galaxy image: bulges are not distinctly redder than their disks; and bulge colors strongly correlate with global colors. The results suggest a roughly coeval evolution of bulges and disks. About 50% of the nuclei of galaxies with central light excesses above the outer exponential profile hold passively evolving red populations. The remainder 50% are galaxies with central blue colors similar to their disks. They may be bulges in formation, or the central parts of disks with non-exponential surface brightness profiles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا