ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting temporal relations (e.g., before, after, concurrent) among events is crucial to natural language understanding. Previous studies mainly rely on neural networks to learn effective features or manual-crafted linguistic features for temporal relation extraction, which usually fail when the context between two events is complex or wide. Inspired by the examination of available temporal relation annotations and human-like cognitive procedures, we propose a new Temporal Graph Transformer network to (1) explicitly find the connection between two events from a syntactic graph constructed from one or two continuous sentences, and (2) automatically locate the most indicative temporal cues from the path of the two event mentions as well as their surrounding concepts in the syntactic graph with a new temporal-oriented attention mechanism. Experiments on MATRES and TB-Dense datasets show that our approach significantly outperforms previous state-of-the-art methods on both end-to-end temporal relation extraction and temporal relation classification.
Many name tagging approaches use local contextual information with much success, but fail when the local context is ambiguous or limited. We present a new framework to improve name tagging by utilizing local, document-level, and corpus-level contextu al information. We retrieve document-level context from other sentences within the same document and corpus-level context from sentences in other topically related documents. We propose a model that learns to incorporate document-level and corpus-level contextual information alongside local contextual information via global attentions, which dynamically weight their respective contextual information, and gating mechanisms, which determine the influence of this information. Extensive experiments on benchmark datasets show the effectiveness of our approach, which achieves state-of-the-art results for Dutch, German, and Spanish on the CoNLL-2002 and CoNLL-2003 datasets.
We present a PaperRobot who performs as an automatic research assistant by (1) conducting deep understanding of a large collection of human-written papers in a target domain and constructing comprehensive background knowledge graphs (KGs); (2) creati ng new ideas by predicting links from the background KGs, by combining graph attention and contextual text attention; (3) incrementally writing some key elements of a new paper based on memory-attention networks: from the input title along with predicted related entities to generate a paper abstract, from the abstract to generate conclusion and future work, and finally from future work to generate a title for a follow-on paper. Turing Tests, where a biomedical domain expert is asked to compare a system output and a human-authored string, show PaperRobot generated abstracts, conclusion and future work sections, and new titles are chosen over human-written ones up to 30%, 24% and 12% of the time, respectively.
We aim to automatically generate natural language descriptions about an input structured knowledge base (KB). We build our generation framework based on a pointer network which can copy facts from the input KB, and add two attention mechanisms: (i) s lot-aware attention to capture the association between a slot type and its corresponding slot value; and (ii) a new emph{table position self-attention} to capture the inter-dependencies among related slots. For evaluation, besides standard metrics including BLEU, METEOR, and ROUGE, we propose a KB reconstruction based metric by extracting a KB from the generation output and comparing it with the input KB. We also create a new data set which includes 106,216 pairs of structured KBs and their corresponding natural language descriptions for two distinct entity types. Experiments show that our approach significantly outperforms state-of-the-art methods. The reconstructed KB achieves 68.8% - 72.6% F-score.
We present a new dataset and models for comprehending paragraphs about processes (e.g., photosynthesis), an important genre of text describing a dynamic world. The new dataset, ProPara, is the first to contain natural (rather than machine-generated) text about a changing world along with a full annotation of entity states (location and existence) during those changes (81k datapoints). The end-task, tracking the location and existence of entities through the text, is challenging because the causal effects of actions are often implicit and need to be inferred. We find that previous models that have worked well on synthetic data achieve only mediocre performance on ProPara, and introduce two new neural models that exploit alternative mechanisms for state prediction, in particular using LSTM input encoding and span prediction. The new models improve accuracy by up to 19%. The dataset and models are available to the community at http://data.allenai.org/propara.
Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.
Recent research has shown great progress on fine-grained entity typing. Most existing methods require pre-defining a set of types and training a multi-class classifier from a large labeled data set based on multi-level linguistic features. They are t hus limited to certain domains, genres and languages. In this paper, we propose a novel unsupervised entity typing framework by combining symbolic and distributional semantics. We start from learning general embeddings for each entity mention, compose the embeddings of specific contexts using linguistic structures, link the mention to knowledge bases and learn its related knowledge representations. Then we develop a novel joint hierarchical clustering and linking algorithm to type all mentions using these representations. This framework doesnt rely on any annotated data, predefined typing schema, or hand-crafted features, therefore it can be quickly adapted to a new domain, genre and language. Furthermore, it has great flexibility at incorporating linguistic structures (e.g., Abstract Meaning Representation (AMR), dependency relations) to improve specific context representation. Experiments on genres (news and discussion forum) show comparable performance with state-of-the-art supervised typing systems trained from a large amount of labeled data. Results on various languages (English, Chinese, Japanese, Hausa, and Yoruba) and domains (general and biomedical) demonstrate the portability of our framework.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا