ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - Liaofu Luo 2015
A quantum model on the chemically and physically induced pluripotency in stem cells is proposed. Based on the conformational Hamiltonian and the idea of slow variables (molecular torsions) slaving fast ones the conversion from the differentiate state to pluripotent state is defined as the quantum transition between conformational states. The transitional rate is calculated and an analytical form for the rate formulas is deduced. Then the dependence of the rate on the number of torsion angles of the gene and the magnitude of the rate can be estimated by comparison with protein folding. The reaction equations of the conformational change of the pluripotency genes in chemical reprogramming are given. The characteristic time of the chemical reprogramming is calculated and the result is consistent with experiments. The dependence of the transition rate on physical factors such as temperature, PH value and the volume and shape of the coherent domain is analyzed from the rate equation. It is suggested that by decreasing the coherence degree of some pluripotency genes a more effective approach to the physically induced pluripotency can be made.
94 - Liaofu Luo 2014
A model of genome evolution is proposed. Based on three assumptions the evolutionary theory of a genome is formulated. The general law on the direction of genome evolution is given. Both the deterministic classical equation and the stochastic quantum equation are proposed. It is proved that the classical equation can be put in a form of the least action principle and the latter can be used for obtaining the quantum generalization of the evolutionary law. The wave equation and uncertainty relation for the quantum evolution are deduced logically. It is shown that the classical trajectory is a limiting case of the general quantum evolution depicted in the coarse-grained time. The observed smooth/sudden evolution is interpreted by the alternating occurrence of the classical and quantum phases. The speciation event is explained by the quantum transition in quantum phase. Fundamental constants of time dimension, the quantization constant and the evolutionary inertia, are introduced for characterizing the genome evolution. The size of minimum genome is deduced from the quantum uncertainty lower bound. The present work shows the quantum law may be more general than thought, since it plays key roles not only in atomic physics, but also in genome evolution.
299 - Liaofu Luo 2014
After a brief review of the protein folding quantum theory and a short discussion on its experimental evidences the mechanism of glucose transport across membrane is studied from the point of quantum conformational transition. The structural variatio ns among four kinds of conformations of the human glucose transporter GLUT1 (ligand free occluded, outward open, ligand bound occluded and inward open) are looked as the quantum transition. The comparative studies between mechanisms of uniporter (GLUT1) and symporter (XylE and GlcP) are given. The transitional rates are calculated from the fundamental theory. The monosaccharide transport kinetics is proposed. The steady state of the transporter is found and its stability is studied. The glucose (xylose) translocation rates in two directions and in different steps are compared. The mean transport time in a cycle is calculated and based on it the comparison of the transport times between GLUT1,GlcP and XylE can be drawn. The non-Arrhenius temperature dependence of the transition rate and the mean transport time is predicted. It is suggested that the direct measurement of temperature dependence is a useful tool for deeply understanding the transmembrane transport mechanism.
207 - Liaofu Luo 2013
A quantum model on the chemically and physically induced pluripotency in stem cells is proposed. Based on the conformational Hamiltonian and the idea of slow variables (molecular torsions) slaving fast ones the conversion from the differentiate state to pluripotent state is defined as the quantum transition between conformational states. The transitional rate is calculated and an analytical form for the rate formulas is deduced. Then the dependence of the rate on the number of torsion angles of the gene and the magnitude of the rate can be estimated by comparison with protein folding. The reaction equations of the conformational change of the pluripotency genes in chemical reprogramming are given. The characteristic time of the chemical reprogramming is calculated and the result is consistent with experiments. The dependence of the transition rate on physical factors such as temperature, PH value and the volume and shape of the coherent domain is analyzed from the rate equation. It is suggested that by decreasing the coherence degree of some pluripotency genes a more effective approach to the physically induced pluripotency can be made.
54 - LiaoFu Luo 2013
The conformational change of biological macromolecule is investigated from the point of quantum transition. A quantum theory on protein folding is proposed. Compared with other dynamical variables such as mobile electrons, chemical bonds and stretchi ng-bending vibrations the molecular torsion has the lowest energy and can be looked as the slow variable of the system. Simultaneously, from the multi-minima property of torsion potential the local conformational states are well defined. Following the idea that the slow variables slave the fast ones and using the nonadiabaticity operator method we deduce the Hamiltonian describing conformational change. It is proved that the influence of fast variables on the macromolecule can fully be taken into account through a phase transformation of slow variable wave function. Starting from the conformation- transition Hamiltonian the nonradiative matrix element is calculated in two important cases: A, only electrons are fast variables and the electronic state does not change in the transition process; B, fast variables are not limited to electrons but the perturbation approximation can be used. Then, the general formulas for protein folding rate are deduced. The analytical form of the formula is utilized to study the temperature dependence of protein folding rate and the curious non-Arrhenius temperature relation is interpreted. The decoherence time of quantum torsion state is estimated and the quantum coherence degree of torsional angles in the protein folding is studied by using temperature dependence data. The proposed folding rate formula gives a unifying approach for the study of a large class problems of biological conformational change.
75 - Liaofu Luo 2012
A quantum mechanical model on histone modification is proposed. Along with the methyl / acetate or other groups bound to the modified residues the torsion angles of the nearby histone chain are supposed to participate in the quantum transition cooper atively. The transition rate W is calculated based on the non-radiative quantum transition theory in adiabatic approximation. By using Ws the reaction equations can be written for histone modification and the histone modification level can be calculable from the equations, which is decided by not only the atomic group bound to the modified residue, but also the nearby histone chain. The theory can explain the mechanism for the correlation between a pair of chromatin markers observed in histone modification. The temperature dependence and the coherence-length dependence of histone modification are deduced. Several points for checking the proposed theory and the quantum nature of histone modification are suggested as follows: 1, The relationship between lnW and 1/T is same as usual protein folding. The non-Arhenius temperature dependence of the histone modification level is predicted. 2, The variation of histone modification level through point mutation of some residues on the chain is predicted since the mutation may change the coherence-length of the system. 3, Multi-site modification obeys the quantum superposition law and the comparison between multi-site transition and single modification transition gives an additional clue to the testing of the quantum nature of histone modification.
364 - Liaofu Luo 2011
The problem of the directionality of genome evolution is studied from the information-theoretic view. We propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion of code, and gene transfer between genomes. The function-coding information quantity of a genome consists of two parts, p-coding information quantity which encodes functional protein and n-coding information quantity which encodes other functional elements except amino acid sequence. The relation of the proposed law to the thermodynamic laws is indicated. The evolutionary trends of DNA sequences revealed by bioinformatics are investigated which afford further evidences on the evolutionary law. It is argued that the directionality of genome evolution comes from species competition adaptive to environment. An expression on the evolutionary rate of genome is proposed that the rate is a function of Darwin temperature (describing species competition) and fitness slope (describing adaptive landscape). Finally, the problem of directly experimental test on the evolutionary directionality is discussed briefly.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا