ترغب بنشر مسار تعليمي؟ اضغط هنا

Invisible cloaks provide a way to hide an object under the detection of waves. A perfect cloak guides the incident waves through the cloaking shell without any distortion. In most cases, some important quantum degrees of freedom, e.g. electron spin o r photon polarization, are not taken into account when designing a cloak. Here, we propose to use the temporal steering inequality of these degrees of freedom to detect the existence of an invisible cloak.
Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation which allows one to remotely prepare, or steer, the state of a distant quantum system. While EPR steering can be thought of as a purely spatial correlation there does exist a tem poral analogue, in the form of single-system temporal steering. However, a precise quantification of such temporal steering has been lacking. Here we show that it can be measured, via semidefinite programming, with a temporal steerable weight, in direct analogy to the recently proposed EPR steerable weight. We find a useful property of the temporal steerable weight in that it is a non-increasing function under completely-positive trace-preserving maps and can be used to define a sufficient and practical measure of strong non-Markovianity.
We use the Hirsch-Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin-orbit coupling. We calculate the spin susceptibility for various values of spin-orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin-orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin-orbit coupling. These results demonstrate that, for single impurity problem in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin-orbit coupling.
Two-dimensional (2D) layered tungsten diselenides (WSe2) material has recently drawn a lot of attention due to its unique optoelectronic properties and ambipolar transport behavior. However, direct chemical vapor deposition (CVD) synthesis of 2D WSe2 is not as straightforward as other 2D materials due to the low reactivity between reactants in WSe2 synthesis. In addition, the growth mechanism of WSe2 in such CVD process remains unclear. Here we report the observation of a screw-dislocation-driven (SDD) spiral growth of 2D WSe2 flakes and pyramid-like structures using a sulfur-assisted CVD method. Few-layer and pyramid-like WSe2 flakes instead of monolayer were synthesized by introducing a small amount of sulfur as a reducer to help the selenization of WO3, which is the precursor of tungsten. Clear observations of steps, helical fringes, and herring-bone contours under atomic force microscope characterization reveal the existence of screw dislocations in the as-grown WSe2. The generation and propagation mechanisms of screw dislocations during the growth of WSe2 were discussed. Back-gated field-effect transistors were made on these 2D WSe2 materials, which show on/off current ratios of 106 and mobility up to 44 cm2/Vs.
Entanglement plays a central role in the field of quantum information science. It is well known that the degree of entanglement cannot be increased under local operations. Here, we show that the concurrence of a bipartite entangled state can be incre ased under the local PT -symmetric operation. This violates the property of entanglement monotonicity. We also use the Bell-CHSH and steering inequalities to explore this phenomenon.
If the vertices of a graph $G$ are colored with $k$ colors such that no adjacent vertices receive the same color and the sizes of any two color classes differ by at most one, then $G$ is said to be equitably $k$-colorable. Let $|G|$ denote the number of vertices of $G$ and $Delta=Delta(G)$ the maximum degree of a vertex in $G$. We prove that a graph $G$ of order at least 6 is equitably $Delta$-colorable if $G$ satisfies $(|G|+1)/3 leq Delta < |G|/2$ and none of its components is a $K_{Delta +1}$.
We apply mean-field theory and Hirsch-Fye quantum Monte Carlo method to study the spin-spin interaction in the bulk of three-dimensional topological insulators. We find that the spin-spin interaction has three different components: the longitudinal, the transverse and the transverse Dzyaloshinskii-Moriya-like terms. When the Fermi energy is located in the bulk gap of topological insulators, the spin-spin interaction decays exponentially due to Bloembergen-Rowland interaction. The longitudinal correlation is antiferromagnetic and the transverse correlations are ferromagnetic. When the chemical potential is in the conduction or valence band, the spin-spin interaction follows power law decay, and isotropic ferromagnetic interaction dominates in short separation limit.
We propose a scheme to realize entanglement swapping via superradiance, entangling two distant cavities without a direct interaction. The successful Bell-state-measurement outcomes are performed naturally by the electromagnetic reservoir, and we show how, using a quantum trajectory method, the non-local properties of the state obtained after the swapping procedure can be verified by the steering inequality. Furthermore, we discuss how the unsuccessful measurement outcomes can be used in an experiment of delayed-choice entanglement swapping. An extension of testing the quantum steering inequality with the observers at three different times is also considered
Let $m$, $n$, and $k$ be integers satisfying $0 < k leq n < 2k leq m$. A family of sets $mathcal{F}$ is called an $(m,n,k)$-intersecting family if $binom{[n]}{k} subseteq mathcal{F} subseteq binom{[m]}{k}$ and any pair of members of $mathcal{F}$ have nonempty intersection. Maximum $(m,k,k)$- and $(m,k+1,k)$-intersecting families are determined by the theorems of ErdH{o}s-Ko-Rado and Hilton-Milner, respectively. We determine the maximum families for the cases $n = 2k-1, 2k-2, 2k-3$, and $m$ sufficiently large.
161 - Bor-Liang Chen 2009
We confirm the equitable $Delta$-coloring conjecture for interval graphs and establish the monotonicity of equitable colorability for them. We further obtain results on equitable colorability about square (or Cartesian) and cross (or direct) products of graphs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا