ترغب بنشر مسار تعليمي؟ اضغط هنا

The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper. Previous works have shown that the hyperbolic structures in the phase space play an essential role in causing the stickiness effect. We present in this paper the relationship between the stickiness effect and the geometric property of hyperbolic structures. Using a two-dimensional area-preserving twist mapping as the model, we develop the numerical algorithms for computing the positions of the hyperbolic periodic orbits and for calculating the angle between the stable and unstable manifolds of the hyperbolic periodic orbit. We show how the stickiness effect and the orbital diffusion speed are related to the angle.
In a previous paper, we have presented a global view of the stability of Neptune Trojan (NT hereafter) on inclined orbit. We discuss in this paper the dependence of stability of NT orbits on the eccentricity. High-resolution dynamical maps are constr ucted using the results of extensive numerical integrations of orbits initialized on the fine grids of initial semimajor axis (a0) versus eccentricity (e0). The extensions of regions of stable orbits on the (a0, e0) plane at different inclinations are shown. The maximum eccentricities of stable orbits in three most stable regions at low (0, 12deg.), medium (22,36deg.) and high (51, 59deg.) inclination, are found to be 0.10, 0.12 and 0.04, respectively. The fine structures in the dynamical maps are described. Via the frequency analysis method, the mechanisms that portray the dynamical maps are revealed. The secondary resonances, concerning the frequency of the librating resonant angle and the frequency of the quasi 2:1 mean motion resonance between Neptune and Uranus, are found deeply involved in the motion of NTs. Secular resonances are detected and they also contribute significantly to the triggering of chaos in the motion. Particularly, the effects of the secular resonance v8, v18 are clarified. We also investigate the orbital stabilities of six observed NTs by checking the orbits of hundreds clones of them generated within the observing error bars. We conclude that four of them, except 2001 QR322 and 2005 TO74, are deeply inside the stable region. The 2001 QR322 is in the close vicinity of the most significant secondary resonance. The 2005 TO74 locates close to the boundary separating stable orbits from unstable ones, and it may be influenced by a secular resonance.
The stability of Trojan type orbits around Neptune is studied. As the first part of our investigation, we present in this paper a global view of the stability of Trojans on inclined orbits. Using the frequency analysis method based on the FFT techniq ue, we construct high resolution dynamical maps on the plane of initial semimajor axis $a_0$ versus inclination $i_0$. These maps show three most stable regions, with $i_0$ in the range of $(0^circ,12^circ), (22^circ,36^circ)$ and $(51^circ,59^circ)$ respectively, where the Trojans are most probably expected to be found. The similarity between the maps for the leading and trailing triangular Lagrange points $L_4$ and $L_5$ confirms the dynamical symmetry between these two points. By computing the power spectrum and the proper frequencies of the Trojan motion, we figure out the mechanisms that trigger chaos in the motion. The Kozai resonance found at high inclination varies the eccentricity and inclination of orbits, while the $ u_8$ secular resonance around $i_0sim44^circ$ pumps up the eccentricity. Both mechanisms lead to eccentric orbits and encounters with Uranus that introduce strong perturbation and drive the objects away from the Trojan like orbits. This explains the clearance of Trojan at high inclination ($>60^circ$) and an unstable gap around $44^circ$ on the dynamical map. An empirical theory is derived from the numerical results, with which the main secular resonances are located on the initial plane of $(a_0,i_0)$. The fine structures in the dynamical maps can be explained by these secular resonances.
The dynamics of artificial asteroids on the Trojan-like orbits around Neptune is investigated in this paper. We describe the dependence of the orbital stability on the initial semimajor axis a and inclination i by constructing a dynamical map on the (a,i)-plane. Rich details are revealed in the dynamical map, especially a unstable gap at i=45 deg is determined and the mechanism triggering chaos in this region is figured out. Our investigation can be used to guide the observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا