ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the energy level crossings of the states and thermal fidelity for a two-qubit system in the presence of a transverse and inhomogeneous magnetic field. It is shown clearly the effects of the anisotropic factor of the magnetic field through th e contour figures of energy level crossing in two subspaces, the isotropy subspace and anisotropy subspace. We calculate the quantum fidelity between the ground state and the state of the system at temperature $T$, and the results show the strong effect of the anisotropic factor again. In addition, by making use of the transition of Yangian generators in the tensor product space, we study the evolution of the thermal fidelity after the transition. The potential applications of Yangian algebra, as a switch to turn on or off the fidelity, are proposed.
99 - Li-Jun Tian , Li-Guo Qin , 2009
We study thermal entanglement in a two-superconducting-qubit system in two cases, either identical or distinct. By calculating the concurrence of system, we find that the entangled degree of the system is greatly enhanced in the case of very low temp erature and Josephson energies for the identical superconducting qubits, and our result is in a good agreement with the experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا