ترغب بنشر مسار تعليمي؟ اضغط هنا

A fundamental problem in quantum information is to explore the roles of different quantum correlations in a quantum information procedure. Recent work [Phys. Rev. Lett., 107 (2011) 080401] shows that the protocol for assisted optimal state discrimina tion (AOSD) may be implemented successfully without entanglement, but with another correlation, quantum dissonance. However, both the original work and the extension to discrimination of $d$ states [Phys. Rev. A, 85 (2012) 022328] have only proved that entanglement can be absent in the case with equal a emph{priori} probabilities. By improving the protocol in [Sci. Rep., 3 (2013) 2134], we investigate this topic in a simple case to discriminate three nonorthogonal states of a qutrit, with positive real overlaps. In our procedure, the entanglement between the qutrit and an auxiliary qubit is found to be completely unnecessary. This result shows that the quantum dissonance may play as a key role in optimal state discrimination assisted by a qubit for more general cases.
We study the procedure for sequential unambiguous state discrimination. A qubit is prepared in one of two possible states, and measured by two observers Bob and Charlie sequentially. A necessary condition for the state to be unambiguously discriminat ed by Charlie is the absence of entanglement between the principal qubit, prepared by Alice, and Bobs auxiliary system. In general, the procedure for both Bob and Charlie to recognize between two nonorthogonal states conclusively relies on the availability of quantum discord which is precisely the quantum dissonance when the entanglement is absent. In Bobs measurement, the left discord is positively correlated with the information extracted by Bob, and the right discord enhances the information left to Charlie. When their product achieves its maximum the probability for both Bob and Charlie to identify the state achieves its optimal value.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا