ترغب بنشر مسار تعليمي؟ اضغط هنا

Geopositioning and tracking a moving boat at sea is a very challenging problem, requiring boat detection, matching and estimating its GPS location from imagery with no common features. The problem can be stated as follows: given imagery from a camera mounted on a moving platform with known GPS location as the only valid sensor, we predict the geoposition of a target boat visible in images. Our solution uses recent ML algorithms, the camera-scene geometry and Bayesian filtering. The proposed pipeline first detects and tracks the target boats location in the image with the strategy of tracking by detection. This image location is then converted to geoposition to the local sea coordinates referenced to the camera GPS location using plane projective geometry. Finally, target boat local coordinates are transformed to global GPS coordinates to estimate the geoposition. To achieve a smooth geotrajectory, we apply unscented Kalman filter (UKF) which implicitly overcomes small detection errors in the early stages of the pipeline. We tested the performance of our approach using GPS ground truth and show the accuracy and speed of the estimated geopositions. Our code is publicly available at https://github.com/JianliWei1995/AI-Track-at-Sea.
XML configuration files are widely used in Android to define an apps user interface and essential runtime information such as system permissions. As Android evolves, it might introduce functional changes in the configuration environment, thus causing compatibility issues that manifest as inconsistent app behaviors at different API levels. Such issues can often induce software crashes and inconsistent look-and-feel when running at specific Androi
112 - Lu Liu , Lili Wei , Wuqi Zhang 2021
Smart contracts are programs running on blockchain to execute transactions. When input constraints or security properties are violated at runtime, the transaction being executed by a smart contract needs to be reverted to avoid undesirable consequenc es. On Ethereum, the most popular blockchain that supports smart contracts, developers can choose among three transaction-reverting statements (i.e., require, if...revert, and if...throw) to handle anomalous transactions. While these transaction-reverting statements are vital for preventing smart contracts from exhibiting abnormal behaviors or suffering malicious attacks, there is limited understanding of how they are used in practice. In this work, we perform the first empirical study to characterize transaction-reverting statements in Ethereum smart contracts. We measured the prevalence of these statements in 3,866 verified smart contracts from popular dapps and built a taxonomy of their purposes via manually analyzing 557 transaction-reverting statements. We also compared template contracts and their corresponding custom contracts to understand how developers customize the use of transaction-reverting statements. Finally, we analyzed the security impact of transaction-reverting statements by removing them from smart contracts and comparing the mutated contracts against the original ones. Our study led to important findings, which can shed light on further research in the broad area of smart contract quality assurance and provide practical guidance to smart contract developers on the appropriate use of transaction-reverting statements.
95 - Haotian Gu , Xin Guo , Xiaoli Wei 2021
One of the challenges for multi-agent reinforcement learning (MARL) is designing efficient learning algorithms for a large system in which each agent has only limited or partial information of the entire system. In this system, it is desirable to lea rn policies of a decentralized type. A recent and promising paradigm to analyze such decentralized MARL is to take network structures into consideration. While exciting progress has been made to analyze decentralized MARL with the network of agents, often found in social networks and team video games, little is known theoretically for decentralized MARL with the network of states, frequently used for modeling self-driving vehicles, ride-sharing, and data and traffic routing. This paper proposes a framework called localized training and decentralized execution to study MARL with network of states, with homogeneous (a.k.a. mean-field type) agents. Localized training means that agents only need to collect local information in their neighboring states during the training phase; decentralized execution implies that, after the training stage, agents can execute the learned decentralized policies, which only requires knowledge of the agents current states. The key idea is to utilize the homogeneity of agents and regroup them according to their states, thus the formulation of a networked Markov decision process with teams of agents, enabling the update of the Q-function in a localized fashion. In order to design an efficient and scalable reinforcement learning algorithm under such a framework, we adopt the actor-critic approach with over-parameterized neural networks, and establish the convergence and sample complexity for our algorithm, shown to be scalable with respect to the size of both agents and states.
Reconfigurable intelligent surfaces (RISs) have been recently considered as a promising candidate for energy-efficient solutions in future wireless networks. Their dynamic and lowpower configuration enables coverage extension, massive connectivity, a nd low-latency communications. Due to a large number of unknown variables referring to the RIS unit elements and the transmitted signals, channel estimation and signal recovery in RIS-based systems are the ones of the most critical technical challenges. To address this problem, we focus on the RIS-assisted multi-user wireless communication system and present a joint channel estimation and signal recovery algorithm in this paper. Specifically, we propose a bidirectional approximate message passing algorithm that applies the Taylor series expansion and Gaussian approximation to simplify the sum-product algorithm in the formulated problem. Our simulation results show that the proposed algorithm shows the superiority over a state-of-art benchmark method. We also provide insights on the impact of different RIS parameter settings on the proposed algorithms.
Reconfigurable intelligent surfaces (RISs) have been recently considered as a promising candidate for energy-efficient solutions in future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communications. Due to a large number of unknown variables referring to the RIS unit elements and the transmitted signals, channel estimation and signal recovery in RIS-based systems are the ones of the most critical technical challenges. To address this problem, we focus on the RIS-assisted wireless communication system and present two joint channel estimation and signal recovery schemes based on message passing algorithms in this paper. Specifically, the proposed bidirectional scheme applies the Taylor series expansion and Gaussian approximation to simplify the sum-product procedure in the formulated problem. In addition, the inner iteration that adopts two variants of approximate message passing algorithms is incorporated to ensure robustness and convergence. Two ambiguities removal methods are also discussed in this paper. Our simulation results show that the proposed schemes show the superiority over the state-of-art benchmark method. We also provide insights on the impact of different RIS parameter settings on the proposed schemes.
58 - Lin Lu , Lu Jun , Li Weiyu 2021
Under the environment of big data streams, it is a common situation where the variable set of a model may change according to the condition of data streams. In this paper, we propose a homogenization strategy to represent the heterogenous models that are gradually updated in the process of data streams. With the homogenized representations, we can easily construct various online updating statistics such as parameter estimation, residual sum of squares and $F$-statistic for the heterogenous updating regression models. The main difference from the classical scenarios is that the artificial covariates in the homogenized models are not identically distributed as the natural covariates in the original models, consequently, the related theoretical properties are distinct from the classical ones. The asymptotical properties of the online updating statistics are established, which show that the new method can achieve estimation efficiency and oracle property, without any constraint on the number of data batches. The behavior of the method is further illustrated by various numerical examples from simulation experiments.
Since the emergence of Ethereum, blockchain-based decentralized applications (DApps) have become increasingly popular and important. To balance the security, performance, and costs, a DApp typically consists of two layers: an on-chain layer to execut e transactions and store crucial data on the blockchain and an off-chain layer to interact with users. A DApp needs to synchronize its off-chain layer with the on-chain layer proactively. Otherwise, the inconsistent data in the off-chain layer could mislead users and cause undesirable consequences, e.g., loss of transaction fees. However, transactions sent to the blockchain are not guaranteed to be executed and could even be reversed after execution due to chain reorganization. Such non-determinism in the transaction execution is unique to blockchain. DApp developers may fail to perform the on-chain-off-chain synchronization accurately due to their lack of familiarity with the complex transaction lifecycle. In this work, we investigate the challenges of synchronizing on-chain and off-chain data in Ethereum-based DApps. We present two types of bugs that could result in inconsistencies between the on-chain and off-chain layers. To help detect such on-chain-off-chain synchronization bugs, we introduce a state transition model to guide the testing of DApps and propose two effective oracles to facilitate the automatic identification of bugs. We build the first testing framework, DArcher, to detect on-chain-off-chain synchronization bugs in DApps. We have evaluated DArcher on 11 popular real-world DApps. DArcher achieves high precision (99.3%), recall (87.6%), and accuracy (89.4%) in bug detection and significantly outperforms the baseline methods. It has found 15 real bugs in the 11 DApps. So far, six of the 15 bugs have been confirmed by the developers, and three have been fixed. These promising results demonstrate the usefulness of DArcher.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artif icial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
188 - Shili Wei , Zhengbo Zhu , Wenyi Li 2021
Illumination is the deliberate utilization of light to realize practical or aesthetic effects. The designers combine with the environmental considerations, energy-saving goals, and technology advances with fundamental physics to develop lighting solu tions to satisfy all of our ever-changing needs. Achieving highly efficient and precise control of the energy output of light sources while maintaining compact optical structures is the ultimate goal of illumination design. To realize miniaturized and lightweight luminaires, the design process must consider the extents of light sources. However, the illumination design for extended sources is still a challenging and unsolved problem. Here, we propose a method to design ultra-performance illumination optics enabled by freeform optical surfaces. The proposed method is very general with no limitations of far-field approximation and Lambertian luminescent property. We demonstrate the feasibility and efficiency of the proposed method by designing several freeform lenses realizing accurate and highly efficient illumination control as well as ultra-compact structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا