ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a systematic method of performing corrected gate operations on an array of exchange-coupled singlet-triplet qubits in the presence of both fluctuating nuclear Overhauser field gradients and charge noise. The single-qubit control sequences we present have a simple form, are relatively short, and form the building blocks of a corrected CNOT gate when also implemented on the inter-qubit exchange link. This is a key step towards enabling large-scale quantum computation in a semiconductor-based architecture by facilitating error reduction below the quantum error correction threshold for both single-qubit and multi-qubit gate operations.
In this book chapter we analyze the high excitation nonlinear response of the Jaynes-Cummings model in quantum optics when the qubit and cavity are strongly coupled. We focus on the parameter ranges appropriate for transmon qubits in the circuit quan tum electrodynamics architecture, where the system behaves essentially as a nonlinear quantum oscillator and we analyze the quantum and semi-classical dynamics. One of the central motivations is that under strong excitation tones, the nonlinear response can lead to qubit quantum state discrimination and we present initial results for the cases when the qubit and cavity are on resonance or far off-resonance (dispersive).
Precise qubit manipulation is fundamental to quantum computing, yet experimental systems generally have stray coupling between the qubit and the environment, which hinders the necessary high-precision control. We report here the first theoretical pro gress in correcting an important class of errors stemming from fluctuations in the magnetic field gradient, in the context of the singlet-triplet spin qubit in a semiconductor double quantum dot. These errors are not amenable to correction via control techniques developed in other contexts, since here the experimenter has precise control only over the rotation rate about the z-axis of the Bloch sphere, and this rate is furthermore restricted to be positive and bounded. Despite these strong constraints, we construct simple electrical pulse sequences that, for small gradients, carry out z-axis rotations while canceling errors up to the sixth order in gradient fluctuations, and for large gradients, carry out arbitrary rotations while canceling the leading order error.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with $T_2 sim 10 mu$s to $20 mu$s without the use of spin echo, and highly stable, showing no evidence for $1/f$ critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
The driven-damped Jaynes-Cummings model in the regime of strong coupling is found to exhibit a coexistence between the quantum photon blockaded state and a quasi-coherent bright state. We characterize the slow time scales and the basin of attraction of these metastable states using full quantum simulations. This form of bistability can be useful for implementing a qubit readout scheme that does not require additional circuit elements. We propose a coherent control sequence that makes use of a simple linear chirp of drive amplitude and frequency as well as qubit frequency. By optimizing the parameters of the system and the control pulse we demonstrate theoretically very high readout fidelities (>98%) and high contrast, with experimentally realistic parameters for qubits implemented in the circuit QED architecture.
We propose methods for the preparation and entanglement detection of multi-qubit GHZ states in circuit quantum electrodynamics. Using quantum trajectory simulations appropriate for the situation of a weak continuous measurement, we show that the join t dispersive readout of several qubits can be utilized for the probabilistic production of high-fidelity GHZ states. When employing a nonlinear filter on the recorded homodyne signal, the selected states are found to exhibit values of the Bell-Mermin operator exceeding 2 under realistic conditions. We discuss the potential of the dispersive readout to demonstrate a violation of the Mermin bound, and present a measurement scheme avoiding the necessity for full detector tomography.
On the level of single atoms and photons, the coupling between atoms and the electromagnetic field is typically very weak. By employing a cavity to confine the field, the strength of this interaction can be increased many orders of magnitude to a poi nt where it dominates over any dissipative process. This strong-coupling regime of cavity quantum electrodynamics has been reached for real atoms in optical cavities, and for artificial atoms in circuit QED and quantum-dot systems. A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity - an effect known as vacuum Rabi splitting. The circuit QED architecture is ideally suited for going beyond this linear response effect. Here, we show that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet, and the appearance of additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings ladder. These constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا