ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine axino dark matter in the regime of a low reheating temperature T_R after inflation and taking into account that reheating is a non-instantaneous process. This can have a significant effect on the dark matter abundance, mainly due to entrop y production in inflaton decays. We study both thermal and non-thermal production of axinos in the context of the MSSM with ten free parameters. We identify the ranges of the axino mass and the reheating temperature allowed by the LHC and other particle physics data in different models of axino interactions. We confront these limits with cosmological constraints coming the observed dark matter density, large structures formation and big bang nucleosynthesis. We find a number of differences in the phenomenologically acceptable values of the axino mass and the reheating temperature relative to previous studies. In particular, an upper bound on the axino mass becomes dependent on T_R, reaching a maximum value at T_R~10^2 GeV. If the lightest ordinary supersymmetric particle is a wino or a higgsino, we obtain lower a limit of approximately 10 GeV for the reheating temperature. We demonstrate also that entropy production during reheating affects the maximum allowed axino mass and lowest values of the reheating temperature.
We examine the extent to which it is possible to realize the NMSSM ideal Higgs models espoused in several papers by Gunion et al in the context of partially universal GUT scale boundary conditions. To this end we use the powerful methodology of neste d sampling. We pay particular attention to whether ideal-Higgs-like points not only pass LEP constraints but are also acceptable in terms of the numerous constraints now available, including those from the Tevatron and $B$-factory data, $(g-2)_mu$ and the relic density $Omega h^2$. In general for this particular methodology and range of parameters chosen, very few points corresponding to said previous studies were found, and those that were found were at best $2sigma$ away from the preferred relic density value. Instead, there exist a class of points, which combine a mostly singlet-like Higgs with a mostly singlino-like neutralino coannihilating with the lightest stau, that are able to effectively pass all implemented constraints in the region $80<m_h<100$. It seems that the spin-independent direct detection cross section acts as a key discriminator between ideal Higgs points and the hard to detect singlino-like points.
We investigate the extent to which the uncertainties associated with the propagation of Galactic cosmic rays impact upon estimates for the gamma-ray flux from the mid-latitude region. We consider contributions from both standard astrophysical backgro und (SAB) processes as well as resolved point sources. We have found that the uncertainties in the total gamma-ray flux from the mid-latitude region relating to propagation parameter values consistent with local B/C and Be10/Be9 data dominate by 1-2 orders of magnitude. These uncertainties are reduced to less than an order of magnitude when the normalisations of the SAB spectral components are fitted to the corresponding Fermi LAT data. We have found that for many propagation parameter configurations (PPCs) our fits improve when an extragalactic background (EGB) component is simultaneously fitted to the data. We also investigate the improvement in our fits when a flux contribution from neutralino dark matter (DM), described by the Minimal Supersymmetric Standard Model, was simultaneously fitted to the data. We consider three representative cases of neutralino DM for both Burkert and Einasto DM density profiles, in each case simultaneously fitting a boost factor of the DM contribution together with the SAB and EGB components. We have found that for several PPCs there are significant improvements in our fits, yielding both substantial EGB and DM components, where for a few of these PPCs the best-fit EGB component is consistent with recent estimates by the Fermi Collaboration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا