ترغب بنشر مسار تعليمي؟ اضغط هنا

A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale $mu$ of the running coupling $alpha_s(mu^2).$ The purpose of the running coupling in any gauge theory is to sum all terms involvi ng the $beta$ function; in fact, when the renormalization scale is set properly, all non-conformal $beta e 0$ terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with $beta=0$. The resulting scale-fixed predictions using the principle of maximum conformality (PMC) are independent of the choice of renormalization scheme -- a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors $n_f$ in the QCD $beta$ function is also correctly determined. We discuss several methods for determining the PMC scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scale ambiguity and the scheme dependence using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.
We compute in the heavy quark effective theory the soft coefficient D_2 entering the resummation of next-to-next-to-leading threshold logarithms for jets initiated by a quark with a small mass compared to the hard scale of the process. We find comple te agreement with a previous computation in full QCD. Contrary to our previous guess, this coefficient turns out to be different from that one entering heavy flavor decay or heavy flavor fragmentation.
We compute the QCD form factor resumming threshold logarithms in B --> X_c + l + nu_l decays to next-to-leading logarithmic approximation. We present an interpolation formula including soft as well as collinear effects softened by the non-vanishing charm mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا