ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide an overview of 21cm tomography of the Cosmic Dawn and Epoch of Reionization as possible with SKA-Low. We show why tomography is essential for studying CD/EoR and present the scales which can be imaged at different frequencies for the diffe rent phases of SKA- Low. Next we discuss the different ways in which tomographic data can be analyzed. We end with an overview of science questions which can only be answered by tomography, ranging from the characterization of individual objects to understanding the global processes shaping the Universe during the CD/EoR
The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21cm line from the earliest phases of star and galaxy formation in the Universe. This 21cm signal pr ovides a new and unique window on both the formation of the first stars and accreting black holes and the later period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.
69 - Matteo Barnabe 2009
We present the first detailed analysis of the mass and dynamical structure of a sample of six early-type lens galaxies, selected from the Sloan Lens ACS Survey, in the redshift range 0.08 < z < 0.33. Both Hubble Space Telescope (HST)/ACS high-resolut ion imaging and VLT VIMOS integral field spectroscopy are available for these systems. The galaxies are modelled - under the assumptions of axial symmetry and two-integral stellar distribution function - by making use of the CAULDRON code, which self-consistently combines gravitational lensing and stellar dynamics, and is fully embedded within the framework of Bayesian statistics. The principal results of this study are: (i) all galaxies in the sample are well described by a simple axisymmetric power-law profile for the total density, with a logarithmic slope gamma very close to isothermal (<gamma> = 1.98 +/- 0.05 and an intrinsic spread close to 5 per cent) showing no evidence of evolution over the probed range of redshift; (ii) the axial ratio of the total density distribution is rounder than 0.65 and in all cases, except for a fast rotator, does not deviate significantly from the flattening of the intrinsic stellar distribution; (iii) the dark matter fraction within the effective radius has a lower limit of about 15 to 30 per cent; (iv) the sample galaxies are only mildly anisotropic, with delta <= 0.16; (v) the physical distinction among slow and fast rotators, quantified by the v/sigma ratio and the intrinsic angular momentum, is already present at z > 0.1. Altogether, early-type galaxies at z = 0.08 - 0.33 are found to be markedly smooth and almost isothermal systems, structurally and dynamically very similar to their nearby counterparts. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا