ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the influence of a linear nonlocal spatial coupling on the interaction of fronts connecting two equivalent stable states in the prototypical 1-D real Ginzburg-Landau equation. While for local coupling the fronts are always monotonic and ther efore the dynamical behavior leads to coarsening and the annihilation of pairs of fronts, nonlocal terms can induce spatial oscillations in the front, allowing for the creation of localized structures, emerging from pinning between two fronts. We show this for three different nonlocal influence kernels. The first two, mod-exponential and Gaussian, are positive-definite and decay exponentially or faster, while the third one, a Mexican-hat kernel, is not positive definite.
The present work studies the influence of nonlocal spatial coupling on the existence of localized structures in 1-dimensional extended systems. We consider systems described by a real field with a nonlocal coupling that has a linear dependence on the field. Leveraging spatial dynamics we provide a general framework to understand the effect of the nonlocality on the shape of the fronts connecting two stable states. In particular we show that non local terms can induce spatial oscillations in the front tails, allowing for the creation of localized structures, emerging from pinning between two fronts. In parameter space the region where fronts are oscillatory is limited by three transitions: the modulational instability of the homogeneous state, the Belyakov-Devaney transition in which monotonic fronts acquire spatial oscillations with infinite wavelength, and a crossover in which monotonically decaying fronts develop oscillations with a finite wavelength. We show how these transitions are organized by codimension 2 and 3 point s and illustrate how by changing the parameters of the nonlocal coupling it is possible to bring the system into the region where localized structures can be formed.
We theoretically investigate the possibility of generating pulses in an excitable (asymmetric) semiconductor ring laser (SRL) using optical trigger pulses. We show that the phase difference between the injected field and the electric field inside the SRL determines the direction of the perturbation in phase space. Due to the folded shape of the excitability threshold, this has an important influence on the ability to cross it. A mechanism for exciting multiple consecutive pulses using a single trigger pulse (i.e. multi pulse excitability) is revealed. We furthermore investigate the possibility of using asymmetric SRLs in a coupled configuration, which is a first step toward an all-optical neural network using SRLs as building blocks.
We report theoretically and experimentally on excitability in semiconductor ring lasers in order to reveal a mechanism of excitability, general for systems close to Z2-symmetry. The global shapes of the invariant manifolds of a saddle in the vicinity of a homoclinic loop determine the origin of excitability and the fea- tures of the excitable pulses. We show how to experimentally make a semiconductor ring laser excitable by breaking the Z2-symmetry in a controlled way. The experiments confirm the theoretical predictions.
We demonstrate that nonlocal coupling strongly influences the dynamics of fronts connecting two equivalent states. In two prototype models we observe a large amplification in the interaction strength between two opposite fronts increasing front veloc ities several orders of magnitude. By analyzing the spatial dynamics we prove that way beyond quantitative effects, nonlocal terms can also change the overall qualitative picture by inducing oscillations in the front profile. This leads to a mechanism for the formation of localized structures not present for local interactions. Finally, nonlocal coupling can induce a steep broadening of localized structures, eventually annihilating them.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا