ترغب بنشر مسار تعليمي؟ اضغط هنا

We use inelastic neutron scattering to study temperature dependence of the paramagnetic spin excitations in iron pnictide BaFe$_2$As$_2$ throughout the Brillouin zone. In contrast to a conventional local moment Heisenberg system, where paramagnetic s pin excitations are expected to have a Lorentzian function centered at zero energy transfer, the high-energy ($hbaromega>100$ meV) paramagnetic spin excitations in BaFe$_2$As$_2$ exhibit spin-wave-like features up to at least 290 K ($T= 2.1T_N$). Furthermore, we find that the sizes of the fluctuating magnetic moments $<m^2>approx 3.6 mu^2_B$ per Fe are essentially temperature independent from the AF ordered state at $0.05T_N$ to $2.1T_N$, which differs considerably from the temperature dependent fluctuating moment observed in the iron chalcogenide Fe$_{1.1}$Te [I. A. Zaliznyak {it et al.}, Phys. Rev. Lett. {bf 107}, 216403 (2011).]. These results suggest unconventional magnetism and strong electron correlation effects in BaFe$_2$As$_2$.
We use inelastic neutron scattering to study the temperature dependence of the low-energy spin excitations in single crystals of superconducting FeTe$_{0.6}$Se$_{0.4}$ ($T_c=14$ K). In the low-temperature superconducting state, the imaginary part of the dynamic susceptibility at the electron and hole Fermi surfaces nesting wave vector $Q=(0.5,0.5)$, $chi^{primeprime}(Q,omega)$, has a small spin gap, a two-dimensional neutron spin resonance above the spin gap, and increases linearly with increasing $hbaromega$ for energies above the resonance. While the intensity of the resonance decreases like an order parameter with increasing temperature and disappears at temperature slightly above $T_c$, the energy of the mode is weakly temperature dependent and vanishes concurrently above $T_c$. This suggests that in spite of its similarities with the resonance in electron-doped superconducting BaFe$_{2-x}$(Co,Ni)$_x$As$_2$, the mode in FeTe$_{0.6}$Se$_{0.4}$ is not directly associated with the superconducting electronic gap.
Since the discovery of the metallic antiferromagnetic (AF) ground state near superconductivity in iron-pnictide superconductors, a central question has been whether magnetism in these materials arises from weakly correlated electrons, as in the case of spin-density-wave in pure chromium, requires strong electron correlations, or can even be described in terms of localized electrons such as the AF insulating state of copper oxides. Here we use inelastic neutron scattering to determine the absolute intensity of the magnetic excitations throughout the Brillouin zone in electron-doped superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_c=20$ K), which allows us to obtain the size of the fluctuating magnetic moment $<m^2>$, and its energy distribution. We find that superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ and AF BaFe$_2$As$_2$ both have fluctuating magnetic moments $<m^2>approx3.2 mu_B^2$ per Fe(Ni), which are similar to those found in the AF insulating copper oxides. The common theme in both classes of high temperature superconductors is that magnetic excitations have partly localized character, thus showing the importance of strong correlations for high temperature superconductivity.
Magnetic interactions are generally believed to play a key role in mediating electron pairing for superconductivity in iron arsenides; yet their character is only partially understood. Experimentally, the antiferromagnetic (AF) transition is always p receded by or coincident with a tetragonal to orthorhombic structural distortion. Although it has been suggested that this lattice distortion is driven by an electronic nematic phase, where a spontaneously generated electronic liquid crystal state breaks the C4 rotational symmetry of the paramagnetic state, experimental evidence for electronic anisotropy has been either in the low-temperature orthorhombic phase or the tetragonal phase under uniaxial pressure that breaks this symmetry. Here we use inelastic neutron scattering to demonstrate the presence of a large in-plane spin anisotropy above TN in the unstressed tetragonal phase of BaFe2As2. In the low-temperature orthorhombic phase, we find highly anisotropic spin waves with a large damping along the AF a-axis direction. On warming the system to the paramagnetic tetragonal phase, the low-energy spin waves evolve into quasi-elastic excitations, while the anisotropic spin excitations near the zone boundary persist. These results strongly suggest that the spin nematicity we find in the tetragonal phase of BaFe2As2 is the source of the electronic and orbital anisotropy observed above TN by other probes, and has profound consequences for the physics of these materials.
We use polarized inelastic neutron scattering to show that the neutron spin resonance below $T_c$ in superconducting BaFe$_{1.9}$Ni$_{0.1}$As$_2$ ($T_c=20$ K) is purely magnetic in origin. Our analysis further reveals that the resonance peak near 7~m eV only occurs for the planar response. This challenges the common perception that the spin resonance in the pnictides is an isotropic triplet excited state of the singlet Cooper pairs, as our results imply that only the $S_{001}=pm1$ components of the triplet are involved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا